

# ENHANCING GRIDLAB-D: LAUNCH WORKSHOP

IN-PERSON WORKSHOP

SEPTEMBER 7<sup>TH</sup>, 2018 1111 BROADWAY, OAKLAND CA

# Agenda

9:00 Welcome/Introductions

9:15 Project Overview (David Chassin, SLAC), including;

- Goals for the TAC
- TAC Schedule

**9:45** Facilitated Discussion of Use Cases and Related Modeling Tools, including:

- How GridLAB-D is used now and may be tailored to best achieve future CPUC goals;
  - Goal: Identify Probable Near-, Medium-, and Long-term GridLAB-D Use Cases
- How TAC members engage with grid modeling tools now;
  - Goal: Identify what about existing tools works and what could work better with help form GridLAB-D

**10:45** Deep-dive on how Hitachi will engage TAC members to help design a new GridLAB-D user interface (Bo Yang, Hitachi)

**11:45** Next Steps

**12:00** Adjourn







# Introduction and Purpose

Roll call

**TAC Commitment Letter** 

# GridLAB-D TAC Meeting 1

7 September 2018

GLOW OpenFIDO EPC 17-046
HiPAS

EPC 17-047

#### **Presentation Overview**

#### 1. **Program Overview**

- TAC mission/schedule/members
- Project teams
- Motivation, benefits, & objectives

#### 2. **Technical Approach**

- Perspective/architecture/GridLAB-D
- GLOW
- HiPAS
- OpenFIDO

#### 3. **Budget and Timeline**

- Timeline/coordination
- Budget overview

#### 4. Consortium Planning

- Motivation
- Challenges
- Success stories

## Project Teams & Key Staff

#### **Hitachi America Labs**

- Dr. Bo Yang (GLOW PM)
- Sadanori Horiguchi
- Dr. Yanzhu Ye
- Sumito Tobe

#### Stanford/SLAC

- <u>Dr. David Chassin</u> (HiPAS/OpenFIDO PM)
- Dr. Chin-Woo Tan (HiPAS/OpenFIDO DPM)
- Alyona Ivanova (modeling and validation)
- Berk Serbetcioglu (performance tools)
- Supriya Premkumar (user interface APIs)

#### **Gridworks**

- Matthew Tisdale
- Alex Smith

#### **Battelle/PNNL**

- Dr. Tom McDermott (OpenFIDO)
- Jason Fuller (HiPAS/GLOW)

#### **National Grid**

Dr. Pedram Jahangiri

### **TAC Mission**

#### **One Coordinated TAC for All Three Projects**

| Participant        | What they bring                                                        |  |  |
|--------------------|------------------------------------------------------------------------|--|--|
| CPUC               | Expert in policy context which will define current and future needs    |  |  |
| DOE                | Expert in GridLAB-D applications and ongoing-R&D                       |  |  |
| Utilities          | Expert in GridLAB-D's role in grid analytics, past, present and future |  |  |
| DER Vendors        | Expert in current and future use-cases for GridLAB-D; future users     |  |  |
| Environmental NGOs |                                                                        |  |  |

#### **TAC Members**

#### **Government**

- Justin Regnier (CPUC)
- Eric Lightner (US DOE)

#### **Industry/Vendors**

- Audrey Lee (Sunrun)
- Jim Baak (STEM)

#### **Public Interest**

- Merrian Borgeson (NRDC)
- Davianna Olert (EDF)

#### **Industry/Users**

- Kristen Brown (ComEd)
- Tom Russell (PG&E)
- Aram Shumavon (Kevala)
- Pedram Jahangiri (National Grid)
- Raul Perez-Guerrero (SCE)
- Rachel Huang (SMUD)

# TAC Schedule

| Date                         | Milestone                                                |  |  |
|------------------------------|----------------------------------------------------------|--|--|
| September 6 + 7 , 2018       | Workshop and TAC Meeting                                 |  |  |
| September - October          | One-on-one Interviews with Project Leads and TAC Members |  |  |
| Annual September<br>Meetings | TAC Convened Annually for Project Update and Input       |  |  |
| Ad hoc                       | Additional TAC engagement as project needs arise         |  |  |

## **Program Overview**

#### Programmatic effort to support decision of Commissioner Picker of 2/25/18

#### **GridLAB-D Open-source Workspace (GLOW - EPC 17-043)**

- General user interface for GridLAB-D
- Focus on use-cases in Grid Modernization investments

#### **High-Performance Agent-based Simulation (HiPAS - EPC 17-046)**

- High-performance simulation in GridLAB-D
- Focus on supporting DRP Tracks 1 (Tools) proceeding use-cases

#### Open Framework for Integrated Data Operations (OpenFIDO - EPC 17-047)

- Energy data interoperability for California (CPUC, utilities, consultants, etc.)
- Focus on support of DRP Track 2 (Data Access Portal) use case

#### Motivation

#### Vision for all three projects

- Enable DRP user-cases (see Com. Picker Decision, R.14-08-013) analysis using GridLAB-D
- Support and leverage California leadership in renewable integration and adoption
- Focus GridLAB-D R&D community on California's electricity system needs
- Establish basis for long-term support of GridLAB-D in California

#### Address critical modeling tool needs in California

- A user-interface for GridLAB-D (GLOW)
- High-performance modeling and simulation in GridLAB-D (HiPAS)
- Data interoperability for system planning and operation studies (OpenFIDO)

## **Project Benefits/Impacts**

#### **Anticipated benefits**

- Shorten time/cost, while increasing transparency, of DRP analysis activities
- Get ahead of future grid modeling issues in California
- Create lasting impact through more usable versions of GridLAB-D
- Enable high levels of DER, DR and EV technology in distribution systems

#### **Highlights of Kick-off Benefits Questionnaire**

- Enable stakeholder insight into dynamic optimization of grid operations and resources
- Feeds 14+ CPUC rulemakings; impact on CEC policy-making, utility planning, DER integration
- Bridge to other grid modeling tools (OpenFIDO) and increase computational power (HiPAS)

## **Technical Perspective**

#### **GridLAB-D** basis for modeling and simulation work

- GLOW focus on use-cases for user interface for modeling and simulation
- HiPAS focus on latest high-performance and scalable solver technology

#### Platform for data integration with other tools (OpenFIDO)

- Compatibility with tools used widely in California
- Emphasis on standards-based formats (e.g., CIM)
- Support for modern high-performance storage technology (cloud, triple-store)
- Support for entire data pipeline including models, weather, AMI, SCADA, etc.

#### GridLAB-D

#### **DOE-funded development since 2003**

- Open source since 2007
- 100,000 downloads
- International user-base

#### Multi-domain support (power, buildings, markets, DERs, dynamics)

- Solves resource integration problems (e.g., DR, EVs, FIDVR)
- Unique agent-based approach to solving grid integration problems
- Test use-cases by simulation before going into the field

# System Architecture





# GLOW (Hitachi)

#### 1. Software specification

 Human-machine interaction, information architecture, visual design; Representative use cases (workflow), I/O requirements, UI support for OpenFIDO/HiPAS

#### 1. Software development

• Fast prototype, agile development, early integration with GridLAB-D, automatic testing environment

#### 1. Software testing

- Alpha Functionality, interface with GridLAB-D/OpenFIDO/HiPAS, comply to standard testing process
- b. Beta Quality, robustness and performance
- c. Usability testing Ease of use, UI flexibility, overall system performance

#### 2. Software release

Coordinated release with OpenFIDO/HiPAS/GridLAB-D

#### 1. Maintenance

In project + 5 yr post project

# HiPAS (SLAC)

#### 1. Multithreaded iterators

 Deploy highly granular parallelization within the structure of GridLAB-D models.

#### 2. Job control

 Enable large-scale batch runs of parametric models for distribution planning studies.

#### 3. Multithreaded solvers

 Enable fast simulations by running independent agent solutions in parallel.

#### 4. Stochastic properties

 Allow representation of correlated properties to reduce the number of batch runs needed to complete planning studies.

#### 5. Large data access

 Enable high-performance simulations when using large amount of data (e.g., SCADA, AMI).

#### 6. Fast powerflow solvers

 Implement a machine learning-based solvers to reduce overall simulation runtime.

# OpenFIDO (SLAC)

#### 1. Technical Approach

- a. Data import, interchange, storage and export of system data between tool users using VADER
- b. Focus on data exchange for IOUs, CPUC, vendors and DRP use-cases
- c. Implementation activities supporting GridLAB-D (coordination with HiPAS and GLOW)

#### 2. PNNL Activities

- a. Webinars on CIM modeling capabilities from DOE
- b. Engage vendors in building data exchange platform
- c. Testing/validation based on feeder models from IOUs

# Project timeline and coordination



# **Budget Overview**

|               | GLOW                     | HiPAS                  | OpenFIDO              | Total                    |
|---------------|--------------------------|------------------------|-----------------------|--------------------------|
| Hitachi       | 1,861,881<br>[1,175,060] | 0                      | 0                     | 1,861,881<br>[1,175,060] |
| SLAC          | 680,000                  | 2,740,782              | 910,225               | 4,331,007                |
| Gridworks     | 399,818                  | 269,999                | 39,964                | 709,781                  |
| PNNL          | 58,000                   | 58,000                 | 49,811                | 165,811                  |
| National Grid | [80,000]                 | [300,000]              | [30,000]              | [410,000]                |
| Total         | 2,999,699<br>[1,255,060] | 3,068,781<br>[300,000] | 1,000,000<br>[30,000] | 7,068,480<br>[1,585,060] |

#### Notes:

1. Quantities in [] brackets indicate cost share and/or matching funds

#### GridLAB-D Consortium

#### **Motivations**

- Support of collaboration-based development
- Guaranteed code contribution after projects
- Timely support for future users and developers
- Outreach to further expand user groups

#### **Challenges**

- Value propositions to interested entities
- Initial funding and program guidance
- Governance and operating principles

#### **Success stories**

#### Linux foundation

<u>Mission</u>: accelerate open source technology development and adoption

Overview: Founded in 2000 / 1000+ corporate member / 85 projects / 16B USD shared development efforts

<u>Services</u>: Hosting OSS projects / trainings / events / Standards

#### Hyperledger Fabric

Mission: Open source collaborative efforts to advance blockchain technologies

Overview: Launched in 2016 / ~200 corporate and associate members

<u>Services</u>: Create enterprise grade software framework and code basis / community-driven infrastructure support / Build technical use cases / Outreach and education

# Questions and Discussion

# Facilitated Discussion of Use Cases and Related Modeling Tools

How GridLAB-D is used now and may be tailored to best achieve future CPUC goals;

 Goal: Identify Probable Near-, Medium-, and Long-term GridLAB-D Use Cases

# Facilitated Discussion of Use Cases and Related Modeling Tools

How TAC members engage with grid modeling tools now;

 Goal: Identify what about existing tools works and what could work better with help form GridLAB-D



Design Lab R&D Division, Hitachi America, Ltd.



#### **Contents**

- 1. What is going on?
- 2. Why should we use a Human-Centered Design approach?
- 3. How does this even work?
- 4. Does this apply to us though?
- 5. We can do this!
- 6. So...now what?



### 1. What is going on?



#### 1 Introduction

We are developing a **Graphical User Interface** for **GridLAB-D Open Workspace** using a **Human-Centered Design** approach





# 2. Why should we use a Human-Centered Design approach?



#### 2 Rationale for Human-Centered Design



This is the **standard** approach for design by many successful companies (not just for graphical interfaces, but also designing solutions):











#### 2 Rationale for Human-Centered Design

Facebook has used Human-Centered Design to surpass competitors like MySpace.

#### 2005



#### 2018





#### 3. How does this even work?



#### 3 How to do Human-Centered Design

#### Focus on the user foremost:

Research Study users to
understand their context
and build empathy



Evaluate Test solutions with users



Design Create initial
ideas for
solutions



Improve Use feedback
and observations
to polish design



### 4. Does this apply to us though?



#### 4 Do tools for professionals need Human-Centered Design?



After all, **professionals'** needs are different from normal consumers...

Answer: YES!



Who else uses **Human-Centered Design**? NASA Ames set up the Human-Centered Systems Lab group to improve mission safety and efficiency such as designing interfaces combining displays, decision support tools, and automation.



The US Department of Health and Human Services established **www.usability.gov** to promote its use in government and the private sector.



#### 5. We can do this!



#### 5 Hitachi's Experience



Case Study: Hitachi Automation Director

#### **Method:**

**Ethnography** in a data center to find requirements for the **future** of IT management software. Ideation workshops and validation interviews led to design constraints

#### **Finding:**

Automation would be a key requirement in the future, but in order to adopt it, operators needed clear explanations of what was being automated and how.

#### **Result:**

Developed IT management automation software that was acceptable and adoptable by operators



#### 6. So...now what?



#### **6 Request**

Without Human-Centered Design



With Human-Centered Design



What do we need to be successful?

YOUR PARTICIPATION!



#### **6 Participation Needs**

#### So what do we need from you?

We would love to have 1 - 2 engineers and 1 manager per power company that we can interview and get demonstrations for 90 minutes per person on-site.

We also would really like to have 1 - 2 technical leads and 1 manager from CPUC.

We will have questions around the topics of:

#### **Current tools & context**

- Process
- Environment
- Interactions
- Technical requirements
  - I/O requirement
  - Data format
  - Computational performance

#### Future needs (use cases)

- Policy outlook
- Impact of environmental changes





#### **END**

#### **GLOW UI Development**

A Human-Centered Design Approach

09/07/2018

Design Lab R&D Division, Hitachi America, Ltd.



# Discussion

Questions?

# Next Steps

Recap

**Upcoming meetings**