VGI WORKING GROUP STAGE 2 REPORT November 26, 2019

Background

The VGI Working Group first convened on August 19, 2019 in Sacramento, with a day-long inter-agency workshop attended by about 45 participants in person and another 50 participants via conference call. That launching was called "Stage 1" and included review of the purpose and objectives of the Working Group and review of a proposed six-month workplan for the Working Group that spanned 7 discrete "Stages." The workshop also began discussion of a proposed methodology for meeting all the Working Group objectives, reviewed foundational reference materials that would contribute to the work, and considered the connection of the Working Group with past and future policy initiatives.

Following that workshop, the VGI Working Group then began to conduct "Stage 2" of its work plan, which continued through October 31, 2019. The purpose of Stage 2 was originally set to "vet and finalize Steps 1-6 of the PG&E VGI Valuation Methodology." This 6-step methodology was intended to be the primary guidance to the Working Group in conducting all subsequent activities. In the course of Stage 2, PG&E's methodology proposal was later amended to become a "Joint IOU" methodology proposal.

The primary work of Stage 2 was first undertaken by a "Subgroup A." Subgroup A was formed during the August 19 workshop and its composition is given in Annex A. Subgroup A had two calls, on August 23 and September 12, and produced three documents: a revised methodology document, an illustrative example of applying all steps of the methodology to a single use case, and a set of stakeholder comments on the methodology. (Note: the Working Group formally took the two weeks of August 26 and September 4 as break weeks.)

This work by Subgroup A was followed by a full-day Working Group workshop on September 26 and a 2-hour Working Group call on October 3. The workshop and call led to a series of methodological issues requiring further resolution and revisions to the methodology. "Subgroup B," formed during the September 26 workshop (composition in Annex A), continued to address these issues, in parallel with its Stage 3 work to solicit (Step 2), screen (Step 3), and score (Step 4) VGI use cases. The final methodological issues needed for these three steps were resolved and agreed during Subgroup B, which had its last progress call on October 31.

Outputs of Stage 2

The four primary outputs of Stage 2 were:

1. An updated methodology document, "Updated V2 IOU Joint Proposal on Use-Case Assessment Methodology" (Annex C). This document underwent multiple revisions in the course of Working Group discussions. The most recent version is dated October 11, 2019. This version contains text in brown color font that was still being updated based on input from stakeholders, and showing key revisions during Stage 2 in blue color font.

2. Resolution and clarification of a number of key methodological issues related to screening criteria, costs and cost scoring, benefits and benefit scoring, and definitions. These resolutions were required in order to proceed with Stage 3 of the Working Group to solicit, screen, score, and rank VGI use cases.

3. A workshop brainstorming session that produced a set of stakeholder-identified topics and opportunities to further clarify the methodology or develop how the methodology is employed in answering the three PUC Questions during the Working Group. Some of these topics were reflected in the updated methodology document, while others were deferred until later stages of the Working Group. The full set of topics is given in Annex D.

4. Stakeholder comments on the October 11 version of the methodology document that can be incorporated into subsequent stages of the Working Group. In addition to cost-benefit scoring, comments covered such topics as non-economic benefits, comparisons with other DERs, terminology, policy recommendations, and multi-point charging.

Development of the Use-Case Assessment Methodology

During the opening workshop on August 19, a document was circulated to the full Working Group, "PG&E VGI Valuation Method." This document reflected the work of a prior "VGI Initiative" among a wide range of stakeholders that took place over six months in the first half of 2019. To understand the work of that VGI Initiative, the Working Group was provided with an August 2019 Framing Document by Gridworks – "Evaluating California's Vehicle-Grid Integration Opportunities."

The evolution of this methodology document during Stage 2 is summarized below. The version existing by the end of Stage 2 was entitled "Updated V2 IOU Joint Proposal on Use-Case Assessment Methodology" (Annex C).

Over the course of Subgroup A and Subgroup B, and as a result of the discussion and brainstorming in the September 26 workshop, the methodology document underwent several rounds of revisions. The methodological issues that were addressed and resolved during this process are given in Table 1 and summarized here for each of the six Steps:

Step 1. Define a VGI Framework. The Working Group adopted this step, with a few changes, including merging the "resource" and "alignment" dimensions, clarifying the meaning of direct and indirect, and clarifying "dispatch instructions."

Step 2. Identify Hypothetical Use Cases. The Working Group adopted this step, adding sectors for medium-duty and heavy-duty vehicles (MHV), adding a discussion of MHV vehicle types, and clarifying a discussion of "customer" and "system" applications. The intake of use cases from stakeholders during Stage 3 was conducted according to the adopted Step 2.

Step 3. Screen Out Impractical VGI Use Cases. The Working Group adopted this step. The "now" and "future" timeframes were clarified, and which timeframes apply to which screens was added. Further elaboration of some of the screens was added. The screening of stakeholder-submitted use cases during Stage 3 was conducted according to the adopted Step 3.

Step 4. Score VGI Use-Cases' Potential Benefits, Costs, and Implementability. There was considerable discussion of Step 4, during the September 26 workshop and October 3 Working Group call, and during several Subgroup B calls. A substantial number of issues were raised, discussed, and resolved. These are summarized in Table 1 and reflected in the Updated "V2" methodology document. The final resolution of Step 4 issues by Subgroup B was completed on October 31, and a Stage 3 "pilot scoring process" began on November 1 on the basis of these resolutions.

Step 5. Rank VGI Use-Cases based on Benefits, Costs, and Implementability. The methodology for this step was resolved as distinguishing four distinct sets of use cases (high benefits and high costs, high benefits and low costs, low benefits and high costs, and low benefits and low costs). And also to further divide each set of use cases into high implementability score and low implementability score. Further discussion of Step 5 is expected during the Working Group's November 14-15 workshop.

Step 6. Additional guidance was added to the Updated "V2" methodology on making policy recommendations. Further discussion of Step 6 is expected during Stage 6 of the Working Group.

An October 9 document submitted to the Working Group by the Joint IOUs, "IOU Perspective on VGI Use-case Benefits and Costs" also provided further discussion of the issues during Stage 2, and was opened for stakeholder comment in advance of the relevant resolutions in Table 1.

This Stage 2 Report reflects the state of the methodology as of mid-way through Stage 3 of the Working Group. Further methodological issues that are raised and/or resolved during Stage 3 and other subsequent stages of the Working Group will be documented in a revised version of this Stage 2 Report, which will become the "methodology" chapter of the Working Group's Final Report.

Step	Issue	Reflected in Updated "V2" Methodology Document	Final Resolution
Step 2	Adding sectors for medium- and heavy- duty vehicles (MHV), and clarifying MHV vehicle types	Yes	Adopted for screening (Step 3) and scoring (Step 4), incorporated into the Excel use-case intake (submission), screening and scoring templates used by the Working Group.
Step 2	Considering other methodological differences in addressing LDV and MHV sectors	Yes	Resolved for screening (Step 3) and scoring (Step 4) and reflected in the Excel screening and scoring templates used by the Working Group. Different benefit ranges were adopted for LDV vs. MHV, and specific technology variants (vehicle profiles) were developed and incorporated into scoring templates.
Step 2	Clarifying "direct" vs. "indirect" approaches	Yes	Clarified in methodology document
Step 2	Clarifying the meaning of "dispatch instructions"	Yes	Clarified in methodology document
Step 2	Merging resources and alignment dimensions	Yes	Revised in methodology document and incorporated into the Excel use-case intake (submission), screening and scoring templates used by the Working Group.
Step 2	Clarifying "customer" applications vs. "system" applications	Yes	Clarified in methodology document
Step 3	Clarifying the definition of "now" in PUC Question 1 as going to 2022	Yes	Use cases should provide value in the 2020-2022 "now" timeframe; the "future" timeframe is 2023-2030. Updated Step 3 as to which screens apply to "now" and "future." Also made the 2020-2022 timeframe clear in the instructions for the Excel screening and scoring templates used by the Working Group.

 Table 1: Methodological Issues Addressed and Resolved in Stage 2

Step	Issue	Reflected in Updated "V2" Methodology Document	Final Resolution
Step 3	Addressing use cases during the Working Group that provide value in the 2022-2030 timeframe	Yes	Will be considered when answering PUC Question (b) on policy recommendations. Updated Step 3 as to which screens apply to "now" and "future" in methodology document.
Step 4	Cost accounting and comparisons as relative, incremental, and/or absolute	Yes	Agreement reached that comparisons are relative and scaled. Methodology document revised and cost scoring metrics in the Excel scoring template used by the Working Group were developed on a relative 1-5 scale.
Step 4	Including costs in use case assessment, not just benefits and implementation	Yes	Agreed by the Working Group and incorporated into the Excel scoring template used by the Working Group.
Step 4	Scoring costs on relative scales of 1-5 rather than inputting actual dollar amounts and adopting a simplified approach to cost scoring.	Yes	Agreed by the Working Group and incorporated into the Excel scoring template used by the Working Group.
Step 4	Agreeing on four optional cost "buckets" for hardware, software, admin, and operation and management.	Yes	Agreed by the Working Group and incorporated into the Excel scoring template used by the Working Group.
Step 4	Clarifying that "costs" represent costs to the buyer, and thus prices by the seller, rather than internal seller (supplier) costs	Yes	Fostered stakeholder understanding through discussions, clarified in the methodology document and in the supplemental "IOU Perspective on VGI Use-case Benefits and Costs" document, and incorporated into the instructions for the Excel scoring template used by the Working Group.
Step 4	Soliciting information on non-economic costs for scoring	No	Agreed by the Working Group and incorporated into the Excel scoring template used by the Working Group.

Step	Issue	Reflected in Updated "V2"	Final Resolution
		Methodology	
		Document	
Step	Clarifying private-	No	All scoring results will be made public,
4	sector stakeholder		including the name of the submitting
	participation in cost-		party, after the deadline for submission
	benefit scoring, and		of all scoring results. Proposed during
	anti-trust concerns		the Working Group call on 11/21, with
	raised by some		comments from parties requested by
	private-sector		11/25, and decided by PUC on 11/26.
	stakeholders		Parties also notified that scoring can be
			based on external reference materials
			that should be named.
Step	Defining and	Yes	Clarified in methodology document
4	discussing the meaning		
	of "implementability"		
Step	Defining "EV	No	Adopted in Subgroup and Working Group
4	population" for		discussions as "EV population that could
	purposes of benefit		(will be able to) participate by 2022."
	scoring		Incorporated into the Excel use-case
			scoring template used by the Working
		•	Group.
Step	Setting value ranges	No	Specific scoring ranges for benefits, costs,
4	for benefit scoring of		and implementability were adopted in
	both light-duty		Working Group discussions and are
	venicies (LDV) and		documented in Annex B. These ranges
	medium- and neavy-		were incorporated into the Excel use-
	duty vehicles (IVIHV)		case scoring template used by the
Chair		N	Working Group.
Step	Clarifying technology	Yes	Inree columns were incorporated into
4	characteristics relevant		the Excel use-case intake template used
	to use-case		for soliciting use cases from stakeholders:
	battery capacities		and other technology notes. The
	charger power levels		information submitted by parties was
	vehicle types and		conied into the Excel use case scoring
	dwoll time		template used by the Working Group for
			reference when scoring use cases
Sten	Clarifying the	Yes	Clarified in methodology document
4	definition of		
	"implementation"		

Annex A: Composition of Subgroup A and Subgroup B

Subgroup A

Tom Ashley	Greenlots
Lance Atkins	Nissan
Noel Crisostomo	CEC
Jessie Denver	ECBE
Mauro Dresti	SCE
Karim Fahrat	PG&E
John Holmes	Paratelic Ventures
Peter Klauer	CAISO
Phillip Kobernick	PCE
Megha Lakhchaura	EVBox
Adam Langton	BMW
Taylor Marvin	SDG&E
Dave McCready	Ford
Pamela McDougal	NRDC
Marc Monbouquette	Enel X
Jin Noh	CESA
Stephanie Palmer	CARB
Richard Scholer	Fiat Chrysler
Jigar Shah	Electrify America
Carrie Sisto	CPUC
Anne Smart	Chargepoint
Jordan Smith	SCE
Dean Taylor	CalETC
Vincent Weyl	Kitu Systems
John Wheeler	Fermata Energy

Subgroup B

Hiba Abedrabo	Toyota
Meredith Alexander	CalStart
Tom Ashley	Greenlots
Lance Atkins	Nissan
Dan Bowerson	Auto Alliance
Ed Burgess	Strategen
Noel Crisostomo	CEC
Eric Cutter	E3
Naor Deleanu	Olivine
Jessie Denver	EBCE
Fidel Leon Diaz	Public Advocate's Office
Mauro Dresti	SCE

Karim Farhat	PG&E
Wendy Fong	Lehigh University
Mehdi Ganji	Willdan Smart City Lead, and IEEE Smart City R&D Committee Chair
Jamie Hall	GM
John Holmes	Honda
Christina Jeworski	Santa Clara VTA
Erick Karlan	Greenlots
Alex Keros	GM
Anna Bella Korbatov	Fermata
Alexandra Leumer	Chargepoint
Taylor Marvin	SDG&E
Chris Michelbacher	Audi
Marc Monbouquette	Enel X
Miles Muller	NRDC
Stephanie Palmer	CARB
Max Parness	Toyota
Ed Pike	CPUC
Jigar Shah	Electrify America
Carrie Sisto	CPUC
Jordan Smith	SCE
Hitesh Soneji	Olivine
Steve Tarnowsky	GM
Dean Taylor	CalETC
Vincent Weyl	Kitu Systems
John Wheeler	Fermata
Zach Woogen	Strategen
Eric Woychik	Willdan

Annex B: Cost, Benefit, and Implementability Scoring Ranges Adopted

LDV benefit ranges

1 = 1-50 (\$/EV/year) 2 = 50-150 3 = 150-300 4 = 300-600 5 = 600-1000

1 = 1 - 5,000 (# EV Population) 2 = 5,000 - 25,000 3 = 25,000 - 100,000 4 = 100,000 - 300,000 5 = 300,000 - 900,000

MHV benefit ranges

1 = 1-500 (\$/EV/year) 2 = 500-1,500 3 = 1,500-3,000 4 = 3,000-6,000 5 = 6,000-10,000

1 = 1 - 200 (# EV Population) 2 = 200-600 3 = 600-1,200 4 = 1,200-2,500 5 = 2,500-5,000

Cost ranges (Overall, Hardware, Software, Operation & Management, Administration)

1 = very low 2 = low 3 = moderate 4 = high 5 = very high

Implementability ranges

- 1 = very difficult and risky to implement/scale-up
- 2 = difficult or risky to implement/scale-up
- 3 = neutral to implement/scale-up
- 4 = easy or not risky to implement/scale-up
- 5 = very easy and not risky to implement/scale-up

Submission by:

- Pacific Gas and Electric Company (PG&E)
- Southern California Edison (SCE)
- San Diego Gas and Electric (SDG&E)

* Updated content from previous version is marked in **blue text**, for convenience

* Work-in-progress content that may get updated at later stage, based on pending input from stakeholders, is marked in **brown text**, for convenience

VGI Valuation Method

Below is an updated version of the six-step VGI Valuation Method, originally proposed by PG&E.¹ Upon achieving consensus within this Working Group, we shall refer to this updated Proposal as the *California VGI Use-Case Assessment Method*, and it shall be used primarily to answer the three main questions of this Vehicle Grid Integration Working Group (VGI WG):

- a. What VGI use cases can provide value now, and how can that value be captured?
- b. How does the value of VGI use cases compare to other storage or Distributed Energy Resources?
- c. What policies need to be changed or adopted to allow additional use cases to be deployed in the future?

The method is presented sequentially in this section. The steps are:

Step 1: Define A VGI Framework
Step 2: Identify Hypothetical VGI Use-Cases
Step 3: Screen Out Impractical VGI Use-Cases
Step 4: Score VGI Use-Cases' Potential Benefits, Costs, and Implementability
Step 5: Rank VGI Use-Cases based on Benefits, Costs, and Implementability
Step 6: Make Recommendations on Policy, Market, or Technology

Step 1: Define A VGI Framework

This first step identifies six key <u>Dimensions</u> along which VGI use-cases can be designed, and their value subsequently assessed. The Dimensions are illustrated in Figure 1 and summarized below, and a detailed description is included in Appendix B.²

- Sector:
 - o Pinpoints where the vehicle is used and charged/discharged
 - Could be broadly grouped into *residential* and *commercial* categories, or subsets thereof (e.g. commercial school bus, or commercial public destination)
 - Determines the loadshapes both in "reference" and "optimized" forms that are to be associated with the VGI use-case
 - o Determines the plug-in schedule that is to be associated with the VGI use-case

¹ Karim Farhat. PG&E VGI Valuation Method. Gridworks VGI Framing Doc. August 2019.

² Karim Farhat. PG&E's VGI Valuation Framework, as originally published in "A Comprehensive Guide to Electric Vehicle Managed Charging" SEPA, May 2019.

• Application:

- Refers to the service(s) VGI aims to provide
- Could be broadly grouped into *customer-centric* and *system-centric* services
- The prospect of "stacking" these services, and their values, is important and relevant not only to VGI but also to other DERs such as battery energy storage
- Type:
 - Determines the power flow to and/or from the vehicle
 - Could be uni-directional (*V1G*) or bi-directional (*V2G*)

Figure 1

• Approach:

 Refers to the control mechanism through which the vehicle's charge and/or discharge is managed

increase costs, reduce benefits, or both

- Could be either *indirect (i.e. passive)* or *direct (i.e. active)*.
- Fundamentally, *indirect (passive)* control involves adjusting the EV charge/discharge by responding to a "signal" only, without prescribing what the charge/discharge adjustment entails. The receiver of the signal chooses how exactly to respond to that signal, including possibly not responding at all. The response is measurable (e.g. in terms of kW or kWh).
- On the other hand, *direct (active)* control involves adjusting the EV charge/discharge by responding to both a "signal" as well as "dispatching instructions" that prescribes what the charge/discharge adjustment entails. In this case, the receiver of the signal is provided clear instructions on the requirements to respond to that signal, and both the "dispatching instructions" as well as the response are measurable (e.g. in terms of kW or

kWh). The "dispatching instructions" can be passed downstream all the way to the EV/EVSE from a variety of actors (e.g. system operator, grid operator, load serving entity, service provider, aggregator, etc.). If the EV/EVSE receives "dispatching instructions" from at least one entity, the approach shall be considered *direct*, regardless which entity originated the "dispatching instructions".

- For both *direct* and *indirect* control, the signal can be economic (e.g. time-of-use price), environmental (e.g. GHG intensity), or reliability-based (e.g. distribution-grid congestion). Utility time-of-use rates are a good example of *passive control* mechanism, whereas Demand Response programs (based on CAISO market clearing prices) are a good example of *active control* mechanism.
- Embedded in this dimension is also the role of aggregation
- Resource Alignment:
 - The framework distinguishes between two important actors: "EV actor" is the party that controls and/or operates the electric vehicle, and "EVSE actor" is the party that controls and/or operates the electric vehicle charger under the utility meter.
 - o Based on that, the framework views the EV-EVSE combination as the Resource.
 - If the EV and EVSE are controlled and/or operated by the same actor, the EV-EVSE Resource is *unified*. Alternatively, if the EV and EVSE are controlled and/or operated by different actors, the EV-EVSE Resource is *fragmented*.
 - Furthermore, if the EV actor and EVSE actor are aligned in their intentions and actions, the EV-EVSE Resource is *aligned*. Alternatively, if the EV actor and EVSE actor are not aligned in their intentions and actions, the EV-EVSE Resource is *misaligned*.
 - By default, if the EV-EVSE Resource is *unified*, it must also be *aligned*, since the EV and EVSE are controlled and/or operated by the same actor. However, in the case the EV-EVSE Resource is *fragmented*, it may be either *aligned* or *misaligned*. Among other factors, incentive design may be an important consideration to achieve alignment between the EV actor and EVSE actor, and to guarantee the delivery of the VGI service.
 - Ultimately, the Resource Alignment dimension yields three potential prospects: (1) *EV*-*EVSE Unified, Aligned*; (2) *EV-EVSE Fragmented, Aligned*; (3) *EV-EVSE Fragmented, Misaligned*.
- Technology:
 - o Identifies the hardware and software needed to realize the VGI opportunity
 - Technology considerations include, but are not limited to:
 - electric vehicle type (e.g. battery electric vehicle, plugin-hybrid electric vehicle)
 - charging rate (e.g. L1, L2, fast-charge)
 - charging type (e.g. AC with mobile inverter, DC with stationary inverter)
 - communication requirements and pathways to EV and/or EVSE
 - Technology solution sets are diverse and span across the other five VGI Dimensions

The VGI framework treats *Sector*, *Application*, and *Type* as "<u>value creation</u>" Dimensions, since they determine how VGI value (both benefits and costs) is created and where it comes from. Value along these Dimensions may be additive. For example, residential charging can be added to commercial charging; wholesale ancillary services can be added to capacity services, and managed charging can be added to managed discharging, resulting in additional benefits and/or costs.

The VGI framework also treats *Approach* and *Resource Alignment* as "<u>value enablement</u>" Dimensions, since they determine how VGI value (both benefits and costs) can be unlocked and effectively captured. Value-enablement Dimensions compliment value-creation Dimensions to accurately characterize benefits and costs. For example, no matter how significant the potential net-benefits may be from leveraging managed charging of EV fleets for distribution-grid upgrade deferral, that value may never be realized in real life if the approach is inappropriate, or the EV and EVSE actors are fragmented and misaligned.

As Technology spans across the other five Dimensions, it has the potential to impact benefits and costs, in terms of both "value creation" as well as "value enablement." In this Working Group, to maintain a delicate balance between simplicity and accuracy, reasonable assumptions on Technology will be made along the other five Dimensions, whenever needed, to valuate and score VGI benefits and/or costs.

Step 2: Identify Hypothetical VGI Use-Cases

Together, the aforementioned six <u>Dimensions</u> constitute the main pillars of a VGI framework by which use-cases are scoped and defined. Under each Dimension, several options can be identified; we refer to those options as <u>Elements</u>. For example, as shown in Figure 2, *Customer - Bill Management* and *System - Day-Ahead Energy* are Elements of the Dimension *Application*. Some of the key Dimensions, such as *Sector* or *Application*, could have many potential Elements. Table 1 and Figure 2 document the Elements for each of the value-relevant Dimensions: *Sector*, *Application*, *Type*, *Approach*, and *Resource Alignment*.

Dimension	ement			
	Residential - Single Family Home			
	Residential - Single Family Home - Rideshare			
	Residential - Multi-Unit Dwelling			
	Residential - Multi-Unit Dwelling - Rideshare			
	Commercial - Workplace			
	Commercial - Public, Destination			
Sector	Commercial - Public, Destination - Rideshare			
	Commercial - Public, Commute			
	Commercial - Public, Commute - Rideshare			
	Commercial - Fleet, Transit Bus			
	Commercial - Fleet, School Bus			
	Commercial - Fleet, Small Truck (class 2-5)			
	Commercial - Fleet, Large Truck (class 6-8)			
	Customer - Bill Management			
	Customer - Upgrade Deferral			
	Customer - Backup, Resiliency			
Application	Customer - Renewable Self-Consumption			
	System - Grid Upgrade Deferral			
	System - Backup, Resiliency			

Table 1

	System - Voltage Support				
	System - Day-Ahead Energy				
	System - Real-Time Energy				
	System - Renewable Integration				
	System - GHG Reduction				
	System - RA, System Capacity				
	System - RA, Flex Capacity				
	System - RA, Local Capacity				
	System - Frequency Regulation Up/Down				
	System - Spinning Reserve				
	System - Non-Spinning Reserve				
Turne	V1G				
туре	V2G				
Anneach	Indirect (passive)				
Approach	Direct (active)				
	EV-EVSE Unified, Aligned				
Resource Alignment	EV-EVSE Fragmented, Aligned				
	EV-EVSE Fragmented, Misaligned				

Figure 2

Example use-cases: ChargeForward Pilot collaboration between PG&E and BMW

Resi_SF	WS_DayAhead_Energy	V1G	Direct	EV-EVSE Unified, Aligned	L2, AC, BEV & PHEV, Telematics
Resi_SF	WS_Renewable_Integration	V1G	Direct	EV-EVSE Unified, Aligned	L2, AC, BEV & PHEV, Telematics
Com_Workplace	WS_Renewable_Integration	V1G	Direct	EV-EVSE Fragmented, Misaligned	L2, AC, BEV & PHEV, Telematics

One particular aspect to note in the Elements under the *Sector* Dimension is the simplified representation of medium-duty and heavy-duty (MDHD) electric vehicles. The MDHD space covers a wide range of vehicle classes and vocations. While each MDHD vehicle class and/or vocation may contribute a unique set of VGI use-cases, the electrification in the MDHD space is still in its early stages. Therefore, to maintain simplicity while still honoring inclusivity, the proposed Method carves out four distinct MDHD Elements in *Sector: Transit Bus, School Bus, Small Truck (Class 2-5),* and *Large Truck (Class 6-8). School Bus* and *Transit Bus* are highlighted due to their distinct charging behavior as well as to special emphasis in California and around the country on accelerating their electrification. Overall, understanding and articulating the VGI use-cases associated with these four simplified MDHD Elements will provide sufficient clarity into their associated VGI value, without adding too much complexity.

This method defines a use-case as a unique combination of Elements under the six Dimensions identified in the framework. To illustrate, below we present an example VGI use-case by choosing a *Sector*, an *Application*, and a *Type*, then selecting an *Approach* and identifying the nature and degree of the *Resource Alignment*; we also highlight the relevant Technology components:

Example: Amazon Delivery Fleet
Sector: Commercial – Fleet, Small Truck (Class 2-5)
Application: Customer – Bill Management
Type: V1G
Approach: Indirect
Resource Alignment: EV-EVSE Unified, Aligned
Technology: Electric Vans; OpenADR Communication Standard; DCFC

VGI use-cases can be simple or advanced. A simple use-case consists of only one choice for each dimensional Element, as in the example provided above. An advanced use-case may consist of multiple choices for each dimensional Element, as would be the case if the commercial fleet in the above example provided both energy and capacity services in the wholesale market.

In theory, hundreds of combinations of Elements in the framework could be made, resulting in hundreds of hypothetical VGI use-cases with distinct values.

Step 3: Screen Out Impractical VGI Use-Cases

Fundamentally, all VGI use-cases are intended to be voluntary in nature, aiming to complement and not jeopardize the primary objective of electric vehicles, which is meeting the customer's mobility needs. Given that overarching principle, the next important step is to identify <u>Screens</u> that can be applied to the full range of hypothetical use-cases in order to filter out "impractical" use-cases. Applying those screens yields a focused set of use-cases that can be further characterized and scored. Screens may emerge

from technological feasibility, market rules, customer preferences, or data availability, among other considerations.

Screens should also be articulated and applied within a clearly defined and agreed upon timeframe for evaluation (hereby referred to as the "Timeframe"). For this Valuation Method, the Timeframe is defined as follows:

- For VGI "now" value: the Timeframe extends from 2019 up to and including 2022.
- For VGI "future" value: the Timeframe extends from 2023 up to and including 2030.

Given the Timeframe specifications above, the following list of Screens can be applied for refining VGI use-cases:

- Technological feasibility:
 - <u>Screen 1 (apply to "now" Timeframe only</u>): Filter out use-cases that require hardware and/or software technologies or solutions that, within the Timeframe: (1) have not been operated or demonstrated to operate in California, (2) are not compatible to California, and (3) are not easily adaptable to California. For clarification: technologies that are being piloted in California today are considered feasible and should not be filtered out within the "now" timeframe.
- Market rules: from a market perspective, VGI use-cases can be broadly divided into three categories: (A) use-cases that can be implemented under existing market participation rules; (B) use-cases that are not possible to implement under existing market participation rules, but are possible to implement under updated rules in the specified Timeframe (e.g. within the "now" Timeframe, this includes market rules under consideration in active regulatory proceedings such as IDER and DDOR); (C) use-cases that are not possible to implement under existing market participation rules, and also not possible to implement under updated rules in the specified Timeframe (i.e. require substantial rule changes that will take longer than the duration of the specified Timeframe).
 - <u>Screen 2a (apply to "now" and "future" Timeframes</u>): Filter out use-cases (C) involving applications and services that cannot be offered through existing or reformed/updated wholesale (e.g. CAISO) market participation rules within the Timeframe.
 - <u>Screen 2b (apply to "now" and "future" Timeframes</u>): Filter out use-cases (C) involving applications or services that cannot be offered through existing or reformed/updated retail market participation rules (including utility rates and programs) within the Timeframe.
- Customer preferences:
 - <u>Screen 3a (apply to "now" and "future" Timeframes</u>): Filter out use-cases that significantly conflicts with or compromises customer mobility needs or lifestyle preferences, within the Timeframe.
 - <u>Screen 3b (apply to "now" and "future" Timeframes</u>): Filter out use-cases that are likely to have significantly low customer adoption rate and/or participation rate, within the Timeframe.

• Data availability:

- <u>Screen 4a (apply to "now" and "future" Timeframes</u>): Filter out use-cases where data needed to score VGI value does not exist, and cannot be reasonably and reliably inferred or simulated, within the Timeframe. Necessary data is listed in detail in Step 4a and 4b; this could include, but is not limited to, the following:
 - Reference unmanaged charging profiles, including total mobility energy need as well as charging behavior
 - Plug-in schedule that shows when the EV is connected and available to interact with the grid
 - Operational specifications of the offered service
 - Economic/monetary value of the offered service
- <u>Screen 4b (apply to "now" and "future" Timeframes</u>): Filter out use-cases that can only be characterized and/or valuated using private data not publicly available within the Timeframe

The outcome from this Step is a short-list of use-cases that pass all the Screens.

Step 4: Score VGI Use-Cases' Potential Benefits, Costs, and Implementability

Having identified potential use-cases and screened them for impracticalities, this method turns next to scoring the potential benefits and costs of use-cases.

To simplify this complex task, this Step shall be composed of three sub-steps:

- Step 4a: scoring of Benefits
- Step 4b: scoring of Costs
- Step 4c: scoring of Implementability

The proposed scoring mechanism reflects the consensus among the Working Group participants to not proceed with an actual monetary quantification of benefits and costs for VGI use-cases in this Working Group. The Working Group reached a consensus on not being capable of, and therefore not proceeding with, quantifying the monetary (\$\$) costs and benefits of VGI use-cases, due to both the limited amount of time available for execution as well as the complexity of the quantification task. One implication of this outcome is that, due to the nature of scoring, cost scores may not be directly compared / contrasted to benefit scores.

Step 4a: Scoring of Benefits

Definition and Scope:

• This sub-step shall focus only on the three "value creation" Dimensions of the VGI Valuation Framework: Sector, Application, and Type. Effectively, this means that this sub-step shall aim to score Benefits for each unique combination of VGI sectors, applications, and types, but it will not address how, and the extent to which, that benefit is captured via different forms and degrees of control mechanisms (Approach), or EV-EVSE resource fragmentation & alignment (Resource Alignment).

- To be clear, all VGI Dimensions remain important for valuating VGI benefits. After this Step 4a addresses the total value of benefits, Step 6 shall make recommendations on the best means to capture as much of that value as possible. This is explained in more detail in Step 6.
- For a specific combination of Sector, Application, and Type, Benefits refer to the "total addressable market", which accounts for two elements:
 - o Benefits per EV in the use-case
 - Total available population of EVs in the use-case

Process:

The process in this sub-step goes as follows:

- The short-list of screened VGI use-cases from Step 3 are grouped together into <u>3D use-cases</u> that account for the Sector, Application, and Type elements only, but drop and disregard the Approach and Resource Alignment elements.
- Each 3D use-case is assigned a Total Benefit Score between 1 and 25
 - Total Benefit Score = {Benefit Score A} x {Benefit Score B}
 - Benefit Score A: a 1-to-5 score that accounts for the benefits per EV
 - Higher score refers to larger benefits per EV
 - Benefit Score B: a 1-to-5 score that accounts for the <u>available population of EVs</u>
 Higher score refers to larger available population of EVs

Refer to Table 2 for specific examples.

- When assigning Benefit Score A: stakeholders should score the incremental benefits of VGI relative to a "reference" EV charging profile. This reference profile should focus on average market conditions related to unmanaged EV charging.
- When assigning both Benefit Score A and Benefit Score B: stakeholders are encouraged to leverage publicly available resources to inform their efforts. Also, stakeholders are encouraged to think about the various factors that may influence these scores; a non-comprehensive list of those factors is included below, for additional guidance:
 - Sector-related factors that may influence benefits:
 - energy demand for mobility needs
 - Schedule of when the EV is plugged-in and available to interact with the grid
 - Application-related factors that may influence benefits:
 - The magnitude of the economic signal (e.g. price of wholesale energy) to maximize or minimize charge/discharge over time
 - Type-related factors that may influence benefits:
 - V1G versus V2G
 - battery characteristics or constraints (e.g. battery capacity in kWh)
 - EV-EVSE characteristics or constraints (e.g. level of charging in kW)
- The relevant Sub-group shall decide on the procedure for how to gather and document the benefit scoring information from the various participating stakeholders.

• To ensure consistent interpretation by stakeholders, the relevant Sub-group shall also strive to provide additional guidance and clarity on the significance of each numerical value for Benefit Scores A and B. To the extent possible, the numerical scores should be tied to real values or value ranges. For example, Benefit Score A = 1 refers to [\$0-\$100] range, and Benefit Score B = 1 refers to [1-1,000] EV population range.

Sub-Step 4b: Scoring of Costs

Definition and Scope:

- To account for the full range of VGI costs, evaluating costs considers all five dimensions: Sector, Application, Type, Approach, and Resource Alignment.
- For a specific combination of Sector, Application, Type, Approach, and Resource Alignment: Costs refer to "**expenses incurred by the buyer**", which in this Methodology shall be either the participating Customer (for Customer-Application use-cases) or California overall (for System-Application use-cases). The <u>cost to the buyer</u> is the same as the <u>price charged by the seller</u>. This methodology requires a high-level, aggregate, scaled characterization of prices or charges typically set by the seller, which are the expenses incurred by the buyer. This would also be within a specific Timeframe (i.e. 2019-2022 for evaluation within the "now" timeframe).
 - For additional clarity: This methodology does not require identifying private or internal costs borne by service or equipment providers for providing services or producing components. Instead, this Methodology requires identifying prices typically charged by those service or equipment providers to offer the same or similar service or equipment.
- Costs should account for the following elements:
 - Hardware
 - Software/IT
 - Operation and management services
 - Administrative expenses

Process:

The process in this sub-step goes as follows:

- Every use-case in the short-list of screened VGI use-cases from Step 3 shall be assigned a unique Total Cost Score between 1 and 10.
 - Total Cost Score is a weighted average of four cost scores:
 - Cost Score A: a 1-to-5 score that accounts for hardware expenses
 - Cost Score B: a 1-to-5 score that accounts for software/IT expenses
 - Cost Score C: a 1-to-5 score that accounts for operation and management services
 - Cost Score D: a 1-to-5 score that accounts for <u>administrative expenses</u>
 - For all Cost Scores A-D: Higher score refers to higher expenses
 - For all Cost Scores A-D: costs should be assessed as annualized expenses
 - The weights assigned to each Cost Score are:
 - Cost Score A: 20%
 - Cost Score B: 20%

- Cost Score C: 35%
- Cost Score D: 25%

 The Total Cost Score is then computed as: Total Cost Score = 0.2x(A) + 0.2x(B) + 0.35x(C) + 0.25x(D)
 Refer to Table 2 for specific examples

- When assigning Cost Scores A-D, stakeholders are encouraged to leverage publicly available resources. Some cost data is already publicly available, in the form of prices for products and services by their providers/sellers (example 1, example 2). Among other forms, this data is sometimes published directly by the vendors, in regulatory filings, or in public reports.
- The relevant Sub-group shall decide on the procedure for how to gather and document the cost scoring information from the various participating stakeholders. Any potential concerns related to anti-trust should be properly addressed, without hindering progress.
- To ensure consistent interpretation by stakeholders, the relevant Sub-group shall also strive to provide additional guidance and clarity on the significance of each numerical value for Cost Scores A-D. To the extent possible, the numerical scores should be tied to real values or value ranges. For example, Cost Score A = 1 refers to [\$0-\$30] range, and Cost Score B = 1 refers to [\$0-\$10] range.

Sub-Step 4c: Scoring of Implementability

Definition and Scope:

- Implementability is defined as "difficulty and risk associated with implementing and scaling up" a use-case.
- Effectively, Implementability accounts for four interrelated elements, which may be interpreted subjectively by different stakeholders:
 - Difficulty of implementation
 - Difficulty of scaling up
 - Risk of implementation
 - Risk of scaling up

Process:

The process in this sub-step goes as follows:

- Every use-case in the short-list of screened VGI use-cases from Step 3 shall be assigned a unique Implementability Score between 1 and 5
 - Stakeholders should weigh in all four elements in their overall Implementability Score, but the four elements of Implementability will not be assigned distinct scores
 - Higher score refers to lower difficulty and risk of implementing and scaling up
- In addition to the Implementability Score, stakeholders can provide stylized comments to qualitatively document the most prominent considerations that influenced their Score. A wide

range of considerations might influence the Implementability Score. Still, stakeholders are highly encouraged to clearly explain their most influential considerations and associate those with the four aforementioned elements, to the extent possible.

• The relevant Sub-group shall decide on the procedure for how to gather and document the implementability scoring information from the various participating stakeholders.

Step 3: Screened Use-Cases (illustrative examples)						
Sector	Application	Type Approach		Resource Alignment		
Commonsial	System - Grid			EV-EVSE		
- Workplace	Upgrade Deferral	V1G	Direct	Fragmented, Aligned		
Commoraial	System - Grid			EV-EVSE		
- Workplace	Upgrade Deferral	V1G	Direct	Fragmented, Misaligned		
Commorcial	System - Grid			EV-EVSE		
- Workplace	Upgrade Deferral	V1G	Indirect	Fragmented, Aligned		

Table 2.

Step 4a: 3D Use-Cases to score benefits (illustrative examples)							
Sector	Application	Туре	Benefit Score A	Benefit Score B	Total Benefit Score		
Commercial - Workplace	System - Grid Upgrade Deferral	V1G	4	2	8		

Step 4b: Use-Cases to score costs (illustrative examples)									
	Application	Туре	Approach	Resource Alignment	Cost	Cost	Cost	Cost	Total
Sector					Score	Score	Score	Score	Cost
					Α	В	С	D	Score
Communial	System - Grid			EV-EVSE					
Workplace	Upgrade	V1G	Direct	Fragmented,	2	3	3	2	2.6
- workplace	Deferral			Aligned					
Commorcial	System - Grid	V1G	Direct	EV-EVSE					
Workplace	Upgrade			Fragmented,	2	3	4	3	3.2
- workplace	Deferral			Misaligned					
Commorcial	System - Grid			EV-EVSE					
Warkplace	Upgrade	V1G	Indirect	Fragmented,	2	1	3	3	2.4
- workplace	Deferral			Aligned					

Step 4c: Use-Cases to score implementability (illustrative examples)								
Soctor	Application	Туре	Approach	Resource	Implementa-	Comment		
Sector				Alignment	bility Score			
Commercial - Workplace	System - Grid			EV-EVSE	2	Difficult to implement: convince customers to participate		
	Upgrade	V1G	Direct	Fragmented,				
	Deferral			Aligned				

Commercial - Workplace	System - Grid			EV-EVSE		Very difficult to implement:
	Upgrade	V1G	Direct	Fragmented,	1	convince customers, and align
	Deferral			Misaligned		incentives, to participate
Commercial - Workplace	System - Grid			EV-EVSE		Difficult to implement: convince
	Upgrade	V1G	Indirect	Fragmented,	2	customers to participate;
	Deferral			Aligned		complex rates

Additional guidance for scoring VGI benefits and costs:

<u>1. Distinction between use-cases with "Customer" Application and use-case with "System" Application:</u> The procedures outlined in Steps 4a and 4b can be applied to all screened use-cases from Step 3. However, the resulting values (benefits, costs) for uses-cases with "Customer" Application shall not be compared to the resulting values (benefits, costs) for use-cases with "System" Application. Fundamentally, this is because these two sets of use-cases assess value from different perspectives, consistent with guidelines provided in the PUC's Standard Practice Manual³, and in alignment with the recent Decision Adopting Cost-Effectiveness Analysis Framework Policies For All Distributed Energy Resource (Rulemaking 14-10-003)⁴.

- Customer-Application use-cases: The benefits and costs associated with these use-cases are computed from the participant(s) perspective. The benefits are to the participating Customer. The costs are also to the participating Customer. These use-cases may use "retail" and other economic signals (e.g. utility rates or incremental LCFS credits) to compute the benefits.
- System-Application use-cases: The benefits and costs associated with these use-cases are computed from a California-wide perspective. The benefits are to California overall. The costs are also to California overall.

Subsequent steps of this Methodology shall not compare Customer-Application use-cases to System-Application uses-cases based on value.

2. The application of "cost-effectiveness (CE) tests" and "least-cost, best-fit (LCBF) principles" for VGI valuation: It is very important to clarify that the proposed simplified procedure in Step 4a and Step 4b to score VGI benefits and costs shall only be used to help address the three PUC questions in this Working Group. Accordingly, the proposed procedure is not intended as a replacement or substitute to existing CE tests or LCBF principles for evaluating VGI as a Distributed Energy Resource (DER). Both the CE tests (e.g. Total Resource Cost test) and the LCBF principles (e.g. Portfolio Adjusted Value metric) shall continue to be used, as relevant and per guidance in existing DER regulatory proceedings, to evaluate current or future specific VGI initiatives. The CE tests shall continue to be applied to evaluate potential VGI initiatives within a Demand Response construct or program, and the LCBF principles shall continue to be applied to evaluate offers for potential VGI procurement initiatives.

<u>3. Leveraging publicly available information and data</u>: To ensure transparency, to the extent possible, publicly available data sources and information should be used to score the benefit and cost items. A

³ <u>https://www.cpuc.ca.gov/uploadedFiles/CPUC Public Website/Content/Utilities and Industries/Energy -</u> Electricity and Natural Gas/CPUC STANDARD PRACTICE MANUAL.pdf

⁴ <u>http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M293/K833/293833387.PDF</u>

good example is leveraging the PUC's Avoided Cost Calculator⁵ to score some of the System benefits such as the avoided cost of supplying electricity.

4. Timeframe:

- Data used to score benefits, costs, and implementability should refer to the same Timeframe.
- To score VGI benefits, costs, and implementability "now" within the timeframe extending from 2019 to 2022: to the extent possible, use data and resources for year 2019.
- To score VGI benefits, costs, and implementability "in the future" within the timeframe extending from 2023 to 2030: to the extent possible, use data and resources for year 2025.

The outcome from this Step 4 is a clear scoring of benefits, costs, and implementability for each VGI use-case that passes the Screens in Step 3.

Step 5: Rank VGI Use-Cases based on Benefits, Costs, and Implementability

Step 5 shall be implemented separately for:

- Customer-Application use-cases
- System-Application use-cases

The results of Step 4 feed into Step 5, which aims to rank the VGI use-cases.

- Stakeholders shall collaborate to carve out four distinct sets of use-cases:
 - Set "HL": high benefits, low costs
 - Set "HH": high benefits, high costs
 - Set "LL": low benefits, low costs
 - Set "LH": low benefits, high costs
 - Because the Total Benefit Score and Total Cost Score were derived based on different criteria, the categorization of a use-case into any of the aforementioned four sets shall not be misinterpreted as being reflective of that use-case's net-benefit.
- Subsequently, within each of the four Sets, stakeholders shall collaborate to further categorize use-cases into two sub-sets:
 - Sub-set "h": high implementability
 - Sub-set "I": low implementability
- The detailed procedure for carving out these distinct sets and sub-sets is left to the relevant Sub-group.

Step 6: Make Recommendations on Policy, Market, or Technology

Step 6 shall be implemented separately for:

- Customer-Application use-cases
- System-Application use-cases

⁵ The CPUC's Avoided Cost Calculator: <u>https://www.cpuc.ca.gov/general.aspx?id=5267</u>

This final step draws on all previous steps to infer recommendations on how to capture and/or improve the value of VGI use-cases. Recommendations made in this step may be related to policy, market, or technology needs.

Leveraging the ranking in Step 5, unique recommendations can be carved out for four distinct sets of well-articulated, screened, and scored VGI use-cases:

- For VGI use-cases in Set HL, with *high* Benefits and *low* Costs:
 - Focus on best ways to capture value:
 - Recommendations for more granular and realistic analysis and quantification of benefits, costs, and net-benefits in monetary (\$\$) terms?
 - Recommendations on considering specific rates, programs, and/or projects?
 - Recommendations on role of customer? Value attribution to various parties?
 - For sub-set "I" of low implementability use-cases:
 - Recommendations to overcome barriers to implementation and scaling-up?
- For VGI use-cases in Sets LL or HH, either with *high* Benefits and *high* Costs or with *low* Benefits and *low* Costs:
 - Focus on best ways to clarify and improve value:
 - Recommendations for more granular and realistic analysis and quantification of benefits, costs, and net-benefits in monetary (\$\$) terms?
 - Recommendations for increasing benefits, reducing costs, or both?
 - Recommendations for progressive improvement of value over time?
 - For sub-set "I" of low implementability use-cases:
 - Recommendations to overcome barriers to implementation and scaling-up?
- For VGI use-cases in Set LH, with *low* Benefits and *high* Costs:
 - Focus on best ways to improve value:
 - Recommendations for increasing benefits, reducing costs, or both?
 - Recommendations for progressive improvement of value over time?
 - Recommendations for additional R&D?

As with Steps 3-5, recommendations in this Step should be tailored to the relevant Timeframe.

The results of this Step are recommendations to policy makers, market participants, or technology and solution providers that can enable further clarifying, capturing, and improving VGI value.

Conclusion

Combined, these six steps break the inquiry on VGI value into manageable pieces, addressed in a sequence that allows for transparent, efficient, and inclusive consideration of use-cases. More broadly, as highlighted in Figure 3, the proposed *California VGI Use-Case Assessment Method* helps achieve three key objectives: (1) aligning VGI policy and regulations with those impacting the broader transportation electrification goal and other DERs; (2) identifying a short-list of attractive VGI use-cases in the short-term; (3) developing a transparent and collaborative process for industry stakeholders to assess a wide range of factors impacting VGI benefits, costs, and implementability.

Figure 3

		Value Creation	Value Enablement			
	Sector	Application	Туре	Approach	Resource Alignment	
'n	• Aligns with EV infra -	Aligns with	Accounts	Aligns with	Accounts for unique VGI	
Policy Alignme	 structure & resource planning Example: TE OIR 	• Example: MUA, IDER	• Aligns with Rule 21	other DERS	aspects	
Modeling & Analysis	 Private & public EV forecasts, load shapes Example: AB 2127 	 Private & public: wholesale & RA market price forecasts; grid and customer service forecasts 	 Private & public optimization assumptions Example: EPIC reports 	 Rates & DR programs Example: Current DR pilots 	 Publicly & privately funded pilots: implementation and operational experience 	
Value Quantification	VGI supply	VGI demand	VGI constraints			

Appendix A

PG&E, SCE, and SDG&E submit the following list of comments to summarize and clarify the updates made in this Proposal.

- **[Page 2]** Step 1, Approach: Proposed updates take into account stakeholder feedback during 09/26 WG Workshop # 2, regarding the need for further detail and clarity.
- **[Page 4-6]** Step 2, Fleet and MDHD: Content will be re-evaluated based on pending feedback from CALSTART and Union of Concerned Scientists (UCS). Through direct conversations, IOUs, CALSTART, and UCS agreed that CALSTART/UCS will make specific recommendations on how to update the categorization of medium- and heavy-duty vehicle Elements in the Sector Dimension. To date, the IOUs have not received these recommendations.
- **[Page 7]** Step 3, Screen 1: Proposed updates take into account PUC feedback during 09/26 WG Workshop #2 on the ability to consider VGI solutions that can be "imported" to California.
- [Page 7] Step 3, Screen 2a and Screen 2b: Proposed updates take into account stakeholder feedback during 09/26 WG Workshop #2 on including retail price signals and utility rates within the scope of participation rules.
- **[Page 8-12]** Step 4: Proposed updates take into account the consensus among stakeholders on 03/10 WG Call to not proceed with an actual monetary quantification of benefits and costs for VGI use-cases. The Working Group reached a consensus on not being capable of, and therefore not proceeding with, quantifying the monetary (\$\$) costs and benefits of VGI use-cases, due to both the limited amount of time available for execution as well as the complexity of the quantification task.
- [Page 8-12] Step 4: Proposed updates are consistent with, and build on, the IOUs perspective on several topics related to assessing the benefits and costs of VGI use-cases, which the IOUs shared in a separate document⁶.
- [Page 8-12] Step 4: Proposed updates take into account stakeholder feedback during 09/26 WG Workshop #2 to have clearer definitions of benefits, costs, and implementability.

⁶ IOU Perspective on VGI Use-cases Benefits and Costs:

https://onedrive.live.com/?authkey=%21AEncszViF83uW0Q&cid=5891771FBA4AFF14&id=5891771FBA4AFF14%21 487&parId=5891771FBA4AFF14%21440&o=OneUp

Appendix B

PG&E VGI Valuation Framework ⁷

Building on the progress achieved during the California Public Utilities Commission VGI Working Group, PG&E took the initiative to develop a VGI framework that can help advance the work on VGI valuation. PG&E's VGI Valuation Framework identifies seven key dimensions along which VGI use-cases can be designed, and their value subsequently quantified. While this framework may still evolve as the industry progresses, it can significantly help different stakeholders think and communicate with clarity and accuracy about VGI.

The seven dimensions are described in more detail below:

1. Sector: It is important to define the sector where the vehicle is used and charged, because that most often determines the corresponding EV load shape and therefore the load management opportunity. Broadly speaking, the three main sectors with unique load shapes are residential (e.g. single-family or multi-unit dwellings), commercial (e.g. workplace, fleet, or public) and rideshare. For example, a residential light-duty vehicle charging profile looks very different from that of a

⁷ PG&E's VGI Valuation Framework, as originally published in "*A Comprehensive Guide to Electric Vehicle Managed Charging*" SEPA, May 2019.

commercial-fleet medium- or heavy-duty vehicle. Different load profiles result in different load management actions and yield different VGI values, depending on the needs.

- 2. Application: Refers to the service(s) the EV is used to fulfill. PG&E breaks down applications into reliability and non-reliability services, which are further characterized at the customer-level (e.g., customer bill reduction), transmission and distribution grid level (e.g., capacity investment deferral), and the broader wholesale market level (e.g., ancillary services, capacity, renewable integration, etc.). An EV may fulfill, and therefore may get compensated for, one or more of these services. The prospect of "stacking" these services, and their values, is important and relevant not only to VGI but also to other DERs such as battery energy storage.
- 3. **Type:** This defines the power flow between the EV and the grid. A uni-directional flow (V1G) results in charging modulation (increase or decrease load) only, whereas a bi-directional flow (V2G) also allows discharging the EV back to the facility or all the way back to the grid. These different types have different associated capability sets and therefore result in different values.

PG&E's framework treats Sector, Application, and Type as "value creation" dimensions, since they determine how VGI value (both benefits and costs) is created and where it comes from. Value along these dimensions is additive: residential charging can be added to commercial charging; wholesale ancillary services can be added to capacity services, and managed charging can be added to managed discharging, resulting in additional benefits and/or costs from VGI.

- 4. **Approach:** Managed charging can be defined as both active (e.g. through demand response) and passive (e.g. through time-of-use rates). The control mechanisms by which load management is enabled have different associated costs and benefits. For example, DR events may result in limited load shifting during specific time periods on specific dates, whereas TOU rates may result in consistent load shifting on daily basis throughout the year. DR participation may result in high benefits per event while necessitating nontrivial investment in technological upgrades. On the other hand, TOU rates may result in consistent savings over time while imposing modest administrative costs to setup and run the program.
- 5. **Resource:** Defines whether the EVSE-EV actors are unified (e.g., a fleet operator that owns the vehicle and the charger) or fragmented (e.g., a workplace charger that doesn't control how EV-driving staff use the asset). When EVSE-EV actors are unified, it is easier to fulfil the VGI application and capture its value. When EVSE-EV actors are fragmented, further effort may be needed to ensure their alignment, which is the focus of the next VGI dimension.
- 6. Alignment: Alignment and Resource are tightly linked. When the EVSE and EV actors are unified, they are aligned by default. In the case that the EVSE and EV actors are fragmented, they may be either aligned or misaligned. Among other factors, incentive design is an important consideration to achieve alignment and guarantee the delivery of the VGI service. Absent this alignment, managed charging/discharging may never get to fulfill its purpose, and the value of VGI would be eroded.

PG&E's framework treats Approach, Resource, and Alignment as "value enablement" dimensions, since they determine how VGI value (both benefits and costs) can be unlocked and effectively captured. Value-enablement dimensions compliment value-creation dimensions to accurately characterize benefits and costs. For example, no matter how significant the potential net-benefits may be from leveraging managed charging of EV fleets for distribution-capacity deferral, that value may never been realized in real life if the approach is inappropriate, the resource is fragmented, and/or the actors are misaligned. Effectively, the value-enablement dimensions help inform the design of successful business models for the VGI use-cases, and they help identify any technological, policy, or market gaps that need to be resolved for that purpose.

7. **Technology:** includes the hardware and software to bring about the necessary capabilities to fulfill a VGI offering. Technology solution sets are diverse and span across the other six VGI dimensions. Examples of technology considerations could include the type of EV (e.g., light-duty vehicle versus heavy-duty vehicle, or plug-in hybrid vehicle versus battery electric vehicle; a battery electric vehicle typically has a larger battery capacity than a plug-in hybrid electric and therefore more opportunity for load shifting), the charger type (e.g., a networked L2 charger may be more expensive but allow higher charge/discharge rate than a networked L1 charger), and the corresponding communications protocols to pass information and commands between the vehicle and ultimately the grid.

PG&E sees the VGI landscape as a decision tree that keeps branching out, with each branch ultimately characterizing a unique use-case. A VGI use-case is defined by choosing a Sector, an Application, and a Type, then selecting a direct or indirect Approach, a unified or fragmented Resource, and the corresponding degree of Alignment.

The following are two examples of a VGI use-case:

• Residential (Sector) EV load decrease (Type) in the afternoon to avoid peak pricing and minimize monthly energy bill (Application) by setting charger timer based on TOU rate schedule (Approach), where both the charger and EV are owned by the meter customer (Resource and Alignment).

• Workplace (Sector) EV load increase (Type) to soak up excess renewable energy during the day (Application) via DR (Approach), where the EVSE and EV are operated by different actors (Resource and Alignment).

Ultimately, this framework yields hundreds of possible VGI use-cases. While all use-cases may be worthy of consideration, some will likely be more valuable and/or market-ready than others. PG&E's approach helps clarify the granularity of the VGI use-cases while inclusively accounting for all of them, and then gathering the necessary information and data to quantify benefits and costs and to design successful programs. While some industry stakeholders can – and tend to – focus their business offerings on a limited set of use-cases, the utility needs to be able to assess, compare, and plan across the full range of feasible and implementable use-cases since they all eventually impact the grid.

Overall, the VGI Valuation Framework PG&E developed helps achieve three objectives: (1) defining a comprehensive list of VGI use-cases, (2) quantifying their value, and (3) aligning VGI policy and regulations with those impacting the broader transportation electrification goal and other DERs. Simply put, the framework serves as an accounting mechanism that charters a clear path for VGI valuation.

ANNEX D

VGI WORKING GROUP WORKSHOP #2, 9/26/2019 Brainstorming and Consensus-Building Results (Sticky Notes on the Wall)

Brainstorming question: To further clarify the methodology, or develop how we employ it during the Working Group, we could....

Note: (*) indicates the three clusters for which the Joint IOUs were going to consider further revisions to the methodology.

(*) Clarify (Cost-Benefit Related) Points in Methodology, Including Using Cost Proxies or Assumptions

What if costs are not available?

Incremental costs vs. absolute costs vs. rankings only

Use cases which include or depend on providing grid services should comprehend "participation" costs Opportunities for cost sharing (e.g., between IOUs and EVSPs)

What (costs) are incremental for VGI vs. what costs are for transportation electrification more broadly? Can you optimize net benefits (in Step 4) by changing vehicle parameters (e.g., larger EV battery)? Standardizing benefits inputs (in Step 4)

Simplify costs qualitatively, like "low" "medium" and "high"

(*) Update Definition of "Implementation"

Is "implementation" defined? Guidelines for easy or hard. Use case ranking can benefit from including a "risk" factor for each use case

(*) Elaborate Utility Assumptions and Clarify Dispatch Mechanisms/Instructions

Direct (active) vs. indirect (passive) approach Ground rules for direct vs. indirect (customer behavior, technology) Need better clarity on how "dispatch" is defined and how it provides value to the methodology

Include but Not Stack the Two Separate Values (System and User)

System value vs. user benefits System and customer benefits overlap Clarify perspective e.g., participating customer, system costs (TRC), etc. Also always calculate system benefits for customer applications? Valuation considering non-energy benefits Remain agnostic to business model for compensation How do we address coincident/stacked use cases? How to preclude "oversubscription", i.e., excessive stacking of use cases

Consider in Step 3

Customer ability to opt-out in Screen 3 Screening out use cases if no market rules (vs. suggesting new market rules)? Screening out uses with low adoption (can we be sure about our low-adoption assumptions)? Qualitative not black and white in Screen 3 Market rules should not be limited to ISO rules, also includes rate design Include retail rates and regulations as part of market rules Don't screen out solutions that could be imported to CA (Step 3) Merge Screen 3a into 3b, Screen 3a is a subset of Screen 3b (low customer adoption)

Consider in Steps 3 and 4 and Err on Side of Simplifying

Greater granularity service stack in MUA framework How granular is granular enough? How to reconcile evaluating a use case for system-average benefits vs. high-value opportunities? Value distribution curve Role of "situational awareness" How do we assess impact of ignoring complexity/poor fit of use cases on value stage & prioritization?

Consider in Subgroup D

Do we do Steps 4-6 for 2023-2030 use cases (that don't pass Step 3 for now)? Definition of "now" Screening out as "not now" Multi-year benefits

<u>"We're Good"</u>

Technology recommendations for CARB in Step 6 Propose new market rules in Step 6 that would allow Screen 2 to pass Identify gaps for policy recommendations in Step 6

Possibly Use in Subgroup B?

Are we already capturing public charging in MD/HD Sector (e.g. truck stops)? Consolidate sectors and applications Example use cases for workplace / fleets How to address advanced inverter functions with AC V2G same as DC V2G

Resolve on 10/3 Working Group Call?

Trucks subsectors distribution vs. transport