HiPAS GridLAB-D

TAC Meeting #6 (April 2020)

EPC 17-043

EPC 17-046

EPC 17-047

GLOW

HiPAS

OpenFIDO

This presentation was prepared with funding from the California Energy Commission under grant EPC-17-046. SLAC National Accelerator Laboratory is operated for the US Department of Energy by Stanford University under Contract No. DE-AC02-76SF00515

Enhance GridLAB-D to support leading California use-cases

- 1. Integration Capacity Analysis Support GLOW (in progress)
- 2. Resilience GRIP analytics (substantially complete)
- 3. Tariff design Powernet With Markets and revenue analysis (in progress)
- 4. <u>Electrification</u> Enable decarbonization simulations (in progress)

High-performance simulation

- Machine learning powerflow in Python performance analysis
- Fast initialization, large scale AWS operations, parallel job control

Improved data/model processing tools

- Basic file input/output ("any data, any format, anywhere")
- New database module (e.g., InfluxDB, Amazon RDS)

New simulation modules/classes/templates

- Industrial loads (NERC-supported NAICS facilities)
- Residential loads (RBSA)
- Commercial loads (CEUS)
- Revenue module (existing PG&E tariffs and billing classes)

High-performance simulation

Machine learning powerflow performance optimization

Improved data/model processing tools

- Advanced file input/output ("any model, anytime, anywhere")
- OpenFIDO integration API (data)

New simulation modules/classes/templates

- Residential and commercial loads (physics-based multi-family residences)
- ICA and GRIP analysis templates
- Revenue module (existing SCE and SDG&E tariffs, tariff analysis)

High-performance simulation

- Granular parallelization for all events (including python events)
- Remote job control, GCP/Azure operations

Improved data processing tools

- OpenFIDO Integration API (models)
- CYME 8 and 9 compatibility

New simulation modules/classes/templates

- Industrial loads (non-NERC NAICS facilities)
- Residential and commercial loads (census-based/AMI-fit models)
- Tariff design and electrification use-cases

GitHub deployment

- Source code: https://source.gridlabd.us/
- Integrated online documentation at https://docs.gridlabd.us/

Docker containers maintained/updated automatically

Docker hub repository located at https://docker.gridlabd.us/

Preparation for commercialization

Support for transfer to non-SLAC hosted domains and resources

Learning-Accelerated Power Flow for GridLAB-D

Lily Buechler

(ebuech@stanford.edu)

Adithya Antonysamy, Tom Achache, Siobhan Powell, Ram Rajagopal, and David Chassin

SLAC

Power Flow simulation in GridLAB-D

- 3-phase, unbalanced, quasi-steady power flow
- Map power injections to voltages via inverse power flow mapping

Standard approach

- Newton Raphson (NR) with the current injection method
- Computationally expensive for large networks

Data-driven approach

 Adaptively learn power flow mapping during simulation from previous NR solutions

Inverse power flow mapping

Solve power flow equations with Newton Raphson via the current injection method [1]

[1] Garcia, Paulo AN, et al. "Three-phase power flow calculations using the current injection method." *IEEE Transactions on Power Systems* 15.2 (2000): 508-514.

Learning-Accelerated Approach: ML + NR

Adaptively switch between using the Newton Raphson solver and a learned data-driven power flow mapping during simulation

Learning-Accelerated Approach: ML-Seeded NR

Seed Newton Raphson solver with estimate from learned data-driven model

Computational Performance: ML + NR

Results from latest implementation (recursive least squares prediction):

- Reduction in total GridLAB-D runtime of 50-65%
- Reduction in power flow computation time of 80-90%
- Trade off between speed and accuracy

PNNL R2-12.47-2 (851 nodes)

Python-based online implementation

- Further optimize computational performance
- Integrate other ML model types
- Analyze other methods for solver selection

C++ based online implementation

- Convert python module to C++ to speed up performance
- Validation on test cases

- 1. General feedback and questions?
- 2. Testing data and models?
- 3. Testing staff and projects?
- 4. New or emerging use-cases?

Thank You

Contact: dchassin@slac.stanford.edu