HIPAS GridLAB-D

TAC Meeting #6 (April 2020)

EPC 17-043 EPC 17-046 EPC 17-047
GLOW HIPAS OpenFIDO
®

This presentation was prepared with funding from the

California Energy Commission under grant EPC-17-046.
SLAC National Accelerator Laboratory is operated for the US
Department of Energy by Stanford University under Contract
No. DE-AC02-76SF00515

bl A h NATIONAL

= @® ACCELERATOR

Dl ™A (£5ORATORY

Project Focus Area

External
datasets

External
models

Shared
datasets

Shared
models

]

Import &
Validate

(OpenFIDO)

}

]

Cloud Ops
(HIPAS)

Simulate
(HIPAS &
GLOW)

Analyse
(GLOW &
OpenFIDO)

}

Exported
data files

Plots and
Reports

Database
records

Project Objectives

Enhance GridLAB-D to support leading California use-cases

1.
2.
3.
4.

Integration Capacity Analysis - Support GLOW (in progress)

Resilience - GRIP analytics (substantially complete)

Tariff design - Powernet With Markets and revenue analysis (in progress)

Electrification - Enable decarbonization simulations (in progress)

HiPAS Enhancements Completed

High-performance simulation

e Machine learning powerflow in Python performance analysis
e Fast initialization, large scale AWS operations, parallel job control

Improved data/model processing tools

e Basic file input/output (“any data, any format, anywhere”)
e New database module (e.g., InfluxDB, Amazon RDS)

New simulation modules/classes/templates

Industrial loads (NERC-supported NAICS facilities)
Residential loads (RBSA)

Commercial loads (CEUS)

Revenue module (existing PG&E tariffs and billing classes)

HiPAS Enhancements in Development

High-performance simulation
e Machine learning powerflow performance optimization
Improved data/model processing tools

e Advanced file input/output (“any model, anytime, anywhere”)
e OpenFIDO integration API (data)

New simulation modules/classes/templates

e Residential and commercial loads (physics-based multi-family
residences)

e |CA and GRIP analysis templates

e Revenue module (existing SCE and SDG&E tariffs, tariff analysis)

HiPAS Enhancements Coming Next Year

High-performance simulation

e Granular parallelization for all events (including python events)
e Remote job control, GCP/Azure operations

Improved data processing tools

e OpenFIDO Integration APl (models)
e CYME 8 and 9 compatibility

New simulation modules/classes/templates

e Industrial loads (non-NERC NAICS facilities)
e Residential and commercial loads (census-based/AMI-fit models)
e Tariff design and electrification use-cases

Highlights: Cloud deployment

GitHub deployment

e Source code: https://source.gridlabd.us/
e Integrated online documentation at https://docs.gridlabd.us/

Docker containers maintained/updated automatically

e Docker hub repository located at htips://docker.gridlabd.us/

Preparation for commercialization

e Support for transfer to non-SLAC hosted domains and resources

https://source.gridlabd.us/
https://docs.gridlabd.us/
https://docker.gridlabd.us/

Learning-Accelerated Power Flow for
GridLAB-D

Lily Buechler
(ebuech@stanford.edu)

Adithya Antonysamy, Tom Achache, Siobhan Powell, Ram Rajagopal,
and David Chassin

mailto:ebuech@stanford.edu

Learning-Accelerated Power Flow

Power Flow simulation in GridLAB-D

e 3-phase, unbalanced, quasi-steady power flow
e Map power injections to voltages via inverse power
flow mapping

Standard approach
e Newton Raphson (NR) with the current injection
method

e Computationally expensive for large networks

Data-driven approach

e Adaptively learn power flow mapping during simulation
from previous NR solutions

tn
»
)

Inverse power flow mapping

Power \%
|

Power flow
equations

Voltage %

Standard Power Flow Solver

SLAE
Solve power flow equations with Newton Raphson via the current injection method [1]
GridLAB-D (C++)
TS+ 0.1 A
Convertto [P, Q. Y, Convert to
User i O Xt ot NR : :) User

ower flow :

inputs P Solver > | Bl outputs

inputs outputs

[1] Garcia, Paulo AN, et al. "Three-phase power flow calculations using the current injection method." IEEE Transactions on Power Systems 15.2 (2000):
508-514.

Learning-Accelerated Approach: ML + NR

SLAT
Adaptively switch between using the Newton Raphson solver and a learned data-driven
power flow mapping during simulation
GridLAB-D (C++)
ereeneessnmenneesssssrennneenineee OWEL HOW e,
P Q Call NR?
f (python) :
User Convertto N Convert to User
o power flow g updated AR LB simulation outputs
inputs inputs s Solver outputs

P tr QIJ VIJ Qt

Learning-Accelerated Approach: ML-Seeded NR

1 A s~
Al B \ - g

Seed Newton Raphson solver with estimate from learned data-driven model

GridLAB-D (C++)

Power flow

A simulation
: outputs
: outputs P

Pr, O Ve, 0,

Convert to
power flow g et
inputs ’ oeE

User
inputs

Py, Q¢, Vi, 0,

Computational Performance: ML + NR

1 A 7O~
v B W
Results from latest implementation (recursive least squares prediction):
e Reduction in total GridLAB-D runtime of 50-65%
e Reduction in power flow computation time of 80-90%
e Trade off between speed and accuracy
IEEE 123 bus PNNL R2-12.47-2 (851 nodes)
—— Learning accelerated solver 0.0020 —— Learning accelerated solver
__0.0020 NR solver ' NR solver
;i_ Non-powerflow computation 5 Non-powerflow computation
P @ 0.0015
T 0.0015 =
E 0.0010 % 0.0010
§ Optimal §
§ 0.0005 performance E 0.0005
o o
0.0000 0.0000
0 20 40 60 80 100 120 140 160 0 100 200 300 200 500

Total Simulation Time (s) Total Simulation Time (s)

Next Steps

Python-based online implementation

e Further optimize computational performance
e Integrate other ML model types
e Analyze other methods for solver selection

C++ based online implementation

e Convert python module to C++ to speed up performance
e Validation on test cases

TAC Questions

. General feedback and questions?
2. Testing data and models?

;. Testing staff and projects?

2. New or emerging use-cases?

-_—

Thank You

Contact: dchassin@slac.stanford.edu

mailto:dchassin@slac.stanford.edu

