

GridLAB-D Open Workspace (GLOW) Project Update

04.02.21

Bo Yang

Yanzhu Ye

Joseph C.

Abe Masanori

R&D, Energy Solutions Lab, Hitachi America, Ltd. Santa Clara, CA, USA

GLOW Overview

GridLAB-D Open Workspace (GLOW) is a project to deliver a web-based graphical user interface for GridLAB-D. The open-source user interface aims to augment GridLAB-D in a more intuitive, user friendly manner, contributing to wider use of the simulation technology.

Hitachi aims to achieve the intuitiveness of the tool by employing human-centered design approach. The process includes defining requirements for the interface through researching the potential users and designing the interfaces according to the discovered requirements.

Outline

- Project Overview
- GLOW Alpha Latest Updates
- Demo/Video
- Related Research Activities
- Future Work

Project Overview

CEC Distribution Resource Modeling Program

To deliver a set of open-source tools around distribution resource modeling and planning

- GridLAB-D Open-source Workspace (GLOW)
 - EPC 17-043 2018-2023
 - General user interface for simulation use cases
 - i.e., Power Flow, ICA
 - GLOW is primary focus of this presentation
- High-Performance Agent-based Simulation (HiPAS)
 - EPC 17-046 2018-2023
 - High-performance simulation in GridLAB-D
- Open Framework for Integrated Data Operations (OpenFIDO)
 - EPC 17-047 2018-2022
 - Data conversion from other tools, e.g. CYME

GLOW Solution Architecture

User Interface

- Model Library/ Viewer
- Simulation Library
- Post-Processing

API

- Data Management
- Analysis
- Configuration

Data Lake

- Input data
- Model data
- Simulation results

Simulation Engine

- GridLAB-D
- GLOW
- OpenFido
- HiPAS

GLOW Project Overview

<u>Task 4.1: Alpha test – Function test with</u> invited Test Masters

September 2020 - September 2021

- ✓ Alpha test plan
- ☑ GLOW Alpha version release
- ☑ Step-by-step instruction
- ✓ Demo video
- ▼ Test files
- ✓ Monthly meeting and update
- ☑ Quick guide document
- Manual
- Additional use cases
- OpenFido integration
- Beta Test Plan
- Notification for Beta Test

Progress

Currently on target to meet GLOW development goals for Beta Version for Sep 2021

Task 4.2 : Beta Test – Usability test with technical society

Sep 2021 – Sep 2022, Scalability and robustness enhancement

GLOW Alpha Test – Latest Updates

Alpha Test Summary

- Environment
 - AWS: A staging environment, similar to production environment.
- Purpose
 - Identify issues/bugs and validate functional and non-functional requirements.

Updates since Sep 2020

- 4 new releases
 - 11.30.20, 12.30.20, 02.01.21, 03.01.21
- 12 test masters from 4 organizations
 - CEC, CPUC, Sunrun, Kevala Analytics
- 13 meetings, mostly in groups

Test Master Feedbacks

Implemented

- Download the simulation result in post-processing
- More information in post-processing chart (e.g., units, labels, object name).
- Users' manuals
- User interface improvement (e.g., redundancy in Home page, Viewer, etc.)
- · Time series simulation and charts for the power flow
- Selection of Reference for Distance

Feedbacks with Work in Progress

- Need to improve a way to create a model from scratch
- Preloaded Datasets:
 - Utility grid models with typical conditions
 - Utility grid models of equipment that could be used as basis of initial modeling
 - TMY weather conditions
- Additional use case (e.g., grid resilience and electrification)
 - Building and transportation electrification
 - Impact on interconnection when charging a car
- Tracing from any node to the substation

Future works

- Data transfer capabilities import/export to and from other applications
- Include a wide range of post-processing tools.

Integration function is mostly applicable to enterprise user and not included in the scope of the current project.

Future works

- Alpha Test
 - More guidance from industry Need utility test masters and test feeders
 - Want to set up 24/7 run on utility feeders for system robustness test
- Beta Release (Sep 2021)
 - More use cases Grid resilience, electrification of building and EV, tariff evaluation
 - Optimized computational performance for more users
 - Integration with OpenFIDO and HiPAS (available after Sep)
- Beta Test
 - Open to technical society universities, utilities and research entities
 - Free individual user account, personal evaluation only
 - No sensitive data

Demo/Video

Related Research Activities

Hosting Capacity Analysis – Updates since Sep 2020

- Improvement
 - ICA for all system nodes
 - ICA for both load type and generation type (load type is useful for EV impact analysis)
 - More benchmarks with industry tools (CYME, OpenDSS)
 - Improved computational efficiency
 - For IEEE123 feeder system, ~32 mins → ~ 3 min
 - Better UI to support various ICA settings and result processing
- Next-step
 - More tests on utility feeder Need industry feeders
 - Evaluate the impacts of load dynamics on ICA
 - More templates for visualization and post-processing (e.g. GLOW/Viewer, GLOW/Post-processing)
 - Continue to optimize performance with HiPAS

New Use Case: Grid Resiliency

Industry

feedback

Objectives GLOW Implementation

- Incorporate resilience planning into current GLOW framework
- Anticipate the vulnerabilities of grid assets, e.g. pole component, under extreme weather conditions
- Qualitative evaluation of grid resilience measures including restoration plans or grid hardening options (<u>under development</u>)

Methodology:

- GridLAB-D time-series power flow simulation with weather profile
- Pole vulnerability model

- Upload feeder asset model
- Upload Weather data (TMY or player file)
- Validate model

- Create new grid resilience simulation
- Change simulation parameters
- Change weather scenarios by uploading new weather data

- Generate grid resilience report (template-based)
- Customize simulation output plotting

Summary

Summary

- Alpha test ongoing (Sep 2020 Sep 2021)
 - Welcome utility test masters 1-2 hours each month
 - Prefer industry test feeders any format
- Beta test Usability test with technical society
 - Sep 2021 Sep 2022, Scalability and robustness enhancement
 - Open to technical society
 - Beta release and test plan available in Sep 2021
 - Early bird enrollment welcome!

Thank You

- California Energy Commission
- California Public Utility Commission
- South California Edison
- Pacific Gas & Electric
- Sunrun
- Kevala Analytics
- SLAC
- Gridworks

HITACHI Inspire the Next