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Importance of Including Distributed Energy Resources in Load 
Forecasts

• Distribution system investments: replacing aging infrastructure and 
distribution expansion

• Procurement of generating capacity to meet peak demand

• Proactive investments to increase hosting capacity

• Evaluating the costs and benefits of incentives or policies to promote 
distributed energy resources (DER)
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Impact of DPV on T&D Investments:
Potential Deferral Value

Source: Adapted from Cohen et al. 2016
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Increasing Adoption of DER Increases the Importance of Accurate 

Forecasts in Planning

Costs of roughly $70 million from severe 
underforecasting and $20 million from severe 
overforecasting for a utility with sales >10TWh/yr
and with up to 8.5% of sales from DPV by the end of 
a 15-year period

Source: Gagnon et al. (2018)
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capacity-expansion models used in utility resource planning processes, which first forecast future 

resource needs over some planning horizon, based on load growth and the existing resource base, and 

then select a least-cost mix of new resources to meet forecasted incremental needs. For each planning 

period, RPM assumes a certain amount of DPV when forecasting incremental needs. When the analysis is 

performed under an incorrect DPV forecast, corresponding to the green lines in Figure 1, RPM optimizes 

for a DPV penetration that does not actually occur, resulting in a sub-optimal system buildout over the 

following 5 years. 

For each of the DPV penetration trajectories described in Step 1, we analyze scenarios with systematic 5-

year DPV forecast errors that range from -100% to +100% (i.e., ranging from a forecast of zero DPV 

growth to one with twice the actual level of growth), as well as a scenario in which RPM assumes the 

correct forecast. Figure 3 shows an example set of scenarios. The central black line represents actual DPV 

adoption, as described in Step 1, and each curve branching off the central line is an incorrect forecast.4 

Figure 3 shows only a single DPV-penetration scenario—a similar set of curves is generated for each 

level of DPV penetration. 

 

 

Figure 3. Example scenarios showing a range of DPV forecast error severity 

In Step 3, the DPV adoption from Step 1 and the bulk power system built in Step 2 become inputs to the 

PLEXOS model, which simulates the cost of operating the system under these conditions. The actual 

amount of DPV adopted is always used in this cost modeling, because system dispatch would be based on 

the actual net load, and misforecasting within the planning process does not impact operational unit 

commitment and economic dispatch decisions. However, if the power system was built using an incorrect 

DPV forecast, PLEXOS outputs the cost of operating a system that was designed for a different amount 

of DPV adoption than actually occurred. 

In Step 4, we add the capital costs calculated in RPM and the operational costs calculated in PLEXOS to 

arrive at the total cost of building and operating the power system. Additionally, we make adjustments to 

represent costs that may be incurred when procuring resources to make up for deviations to either 

resource adequacy or RPS requirements. In general, overforecasting can result in the planning reserve 

margin and/or RPS requirements not being met, since there is less capacity on the system than RPM 

                                                      
4 In RPM, once a 5-year plan forecasts DPV at a certain level, future forecasts cannot drop below that level, even if 

they otherwise would based on our systematic error calculation. This modeling artifact results in asymmetries in the 

severity of misforecasting (e.g., compare the distance away from the actual adoption line of the 100% overforecast 

line vs. the 100% underforecast line in the 2020–2025 period in Figure 3), but it does not significantly impact the 

results of this work. 
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Regardless of misforecast 

severity all plans are updated 

every 5 years
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Planning for a Distributed Disruption: Innovative Practices for 

Incorporating Distributed Solar into Utility Planning

• Analysts project that distributed solar photovoltaics (DPV) will continue growing rapidly across the 
United States.

• Growth in DPV has critical implications for utility planning processes, potentially affecting future 
infrastructure needs.

• Appropriate techniques to incorporate DPV into utility planning are essential to ensuring reliable 
operation of the electric system and realizing the full value of DPV.

Context 

• Comparative analysis and evaluation of roughly 30 recent planning studies, identifying innovative 
practices, lessons learned, and state-of-the-art tools. 

Approach

• Electric infrastructure planning (IRPs, transmission, distribution).

• Focus on the treatment of DPV, with emphasis on how DPV growth is accounted for within 
planning studies.

Scope
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Key Findings

• Forecasting load with DER is often “top-down”: separately forecast load and 
quantity of DER at the system level, allocate that system forecast down to 
more granular levels. 

• Many factors affect customer decisions to adopt DER, including the cost and 
performance of DER, incentives, customer retail rates, peer-effects, and 
customer demographics. Customer-adoption models can help account for 
many of these factors. 

• Forecasts are uncertain: It may be valuable to combine various approaches 
and to benchmark against third-party forecasts.



NREL    |    7

High End of 3rd Party Forecasts Suggests More DPV Than Considered By 

Utilities
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A Variety of Methods Are Used to Develop DPV Forecasts 
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DPV Deployment Drivers

DPV economics: 

• DPV technology cost and performance 

• Federal and state incentives 

• New business models (e.g., third party ownership)

• Electricity prices 

• Rate design (including the availability of Net Energy Metering)

Public policy:

• Renewable Portfolio Standards and environmental requirements

• CO2 regulation

Customer preferences:

• DPV deployment may be shaped by interest in increased customer choice

Macro factors:

• Economic growth, load growth, oil prices, and cost and availability of complementary 
technologies (e.g., storage and electric vehicles)
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Customer-adoption Modeling Brings Customer Decisions Into DPV 

Forecast

Method Description

Explanatory Factors Used

Recent 
installation 
rates

Incentive
program 
targets

Technical 
potential

PV economics
End-user
behaviors

Stipulated 
Forecast

Assumes end-point DPV 
deployment

Historical Trend
Extrapolates future 
deployment from historical 
data

X

Program-Based 
Approach

Assumes program 
deployment targets 
reached

X

Customer-
Adoption
Modeling 

Uses adoption models that 
represent end-user 
decision making 

X X X X
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Some Planners Use Customer-adoption Models for DPV Forecasting

The dGen model can be used to explore 
forward-looking topics, such as 
understanding:

• Infrastructure needs for distribution 
grids to accommodate DER 
deployment

• How DERs influence retail electricity 
prices

• The impact of an electrifying economy

• Synergy between distributed-scale 
resources and transmission-scale 
resources.

Source: Koebrich et al. (2018) 
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Economic Factors, Especially Rate Design, Significantly Affect Adoption 

Projections

17 
 

The flat rate scenario leads to the highest deployment in 2050, and the lower feed-in tariff 
scenario leads to the lowest. Most of the rate and compensation scenarios follow temporal 
trends similar to that of the reference scenario (with different magnitudes), but the time-
varying rate scenario follows a different overall trajectory. Specifically, under the time-varying 
rate scenario, PV deployment is greater than in the reference scenario through about 2030, 
after which it falls below the reference deployment. This is because, at low solar penetrations, 
the higher average compensation for PV under time-varying rates boosts PV deployment. 
However, as regional PV penetration increases and the energy and capacity value of PV erodes, 
compensation for net-metered PV generation also erodes under time-varying rates, leading to 
lower deployment. 
 

 
Figure 7. National distributed PV deployment by scenario (with rate feedback effects included) 

Figure 8  focuses on 2050 cumulative PV deployment for each of the seven alternative scenarios 
relative to the reference scenario. Only the flat rate and higher feed-in tariff scenarios increase 
deployment; all other scenarios reduce deployment. The results indicate that, were all 
residential and commercial customers on a time-invariant flat rate with no fixed or demand 
charges, PV deployment would increase by 5% owing to the increased average compensation 
under that simple rate design. The higher feed-in tariff level of $0.15/kWh also increases 
deployment relative to the reference scenario; the difference is clearly related to the tariff’s 
magnitude, and higher values would further increase deployment. A lower feed-in tariff level 
would lead to substantially lower deployment than the reference case, 79% lower for our 
$0.07/kWh  feed-in tariff scenario. Due to the declining value of PV with increased penetration, 
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the time-varying rate scenario leads to a reduction in cumulative PV deployment of 22% in 2050 
compared with the reference scenario; as indicated earlier, time-varying rate structures actually 
increase PV deployment through about 2030.  
 
Both fixed-charge scenarios reduce PV deployment in 2050: a $10/month charge applied to 
residential customers reduces total cumulative deployment by 14%, and a $50/month charge 
reduces deployment by 61%. Partial net metering, where PV generation exported to the grid 
(i.e., not consumed on site) is compensated at a calculated avoided-cost rate, reduces 
deployment by 31% because in this analysis the assumed avoided cost from PV is lower than 
the average retail rate, reducing average compensation and increasing the customer’s PV 
payback time. 
 

 
Figure 8. Change in modeled cumulative national PV deployment by 2050 for various rate 
design and compensation mechanism scenarios, relative to the reference scenario  (with rate 
feedback effects included) 
 
The distributions of PV deployment differences (compared with the reference scenario) across 
U.S. states vary substantially by scenario (Figure 9). For the two fixed-charge scenarios, the 
range is relatively small, primarily reflecting differences in the average residential retail rate and 
average annual customer load across states.  For example, states with large annual average 
customer loads or high average retail rates will see a smaller impact from a given increase in 
fixed customer charges.  The flat rate scenario increases deployment relative to the reference 
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Propensity to Adopt Accounts for Factors Like Customer Demographics

Method Description

Predictive Factors Used

Location of existing 
load or population

Location of existing 
DPV

Detailed customer
characteristics 

Proportional to Load 
Assumes DPV is distributed in 
proportion to load or population X

Proportional to 
Existing DPV

Assumes DPV grows in proportion to 
existing DPV X

Propensity to Adopt
Predicts customer adoption based on 
factors like customer demographics or 
customer load 

X X X
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Advances in Customer Adoption Modeling

• Agent based models simulate actions and interactions of agents to assess their 
individual effects on a larger system.

– Allow for better representation of heterogeneity of customers and more 
complex decision-making criteria

• Discrete choice models have a well-defined methodology for soliciting customer 
preferences and can model competition between several options

– Provide framework for empirically derived forecasts

• Modeling co-adoption of technologies, e.g., solar + storage
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Additional Challenges: Removing DER from Historical Load to Create 

Accurate Load Forecasts

• PJM recently adjusted load forecasting 
methodology to better account for 
behind-the-meter PV

• Original approach used the observed 
load to forecast future load, without 
adjusting for effect of behind-the-meter 
DPV on the observed load

– Load reductions from behind-the-
meter DPV were being attributed to 
new end uses in the load 
forecasting model

• Revised approach removes estimate of 
historical PV before forecasting load, 
then adds back in forecast of DPV to new 
net load forecast

Historical observed 
load (embeds DPV)

Combined load 
forecast and DPV 
forecast

Historical DPV
Forecast  DPV

Actual load        
(w/o DPV)

Load forecast 
(w/o DPV)

Historical

Additional detail: Falin (2015)
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More Examples of DER in Transmission Plans

• Evaluating DPV as a resource option: 
• CAISO transmission planning process identifies transmission needs to meet reliability 

criteria, then examines feasibility of meeting needs with DPV. 
• If CAISO finds it is feasible to meet needs with increased DPV, information is passed onto 

CPUC and utilities to determine if programs to encourage additional DPV would be cost-
effective.  

• Locating DPV within the system:
• ISO-NE and NYISO use the load-zone-level DPV forecast in their capacity markets and 

transmission planning. PJM adjusts the load-zone peak demand by the on-peak 
contribution of DPV for its capacity market and transmission planning.

• Peak demand reduction (i.e., transmission level capacity credit):
• ISO-NE and PJM use a stricter definition of peaks in transmission planning than for the 

capacity market.
• Consistent scenarios across planning forums: 

• CAISO/CPUC/CEC coordination, NYISO Gold Book, ISO-NE 10-year regional planning 
process to coordinate assumptions
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Forecasting Other Distributed Energy Resources

• Some DER are similar to DPV :

– Systems can be installed either in-front-
of- or behind-the-meter 

– Adoption can occur for residential, 
commercial, or industrial customers

• These technologies have yet to see 
significant adoption due to higher cost or 
other barriers, but adoption might increase 
in the future.  Similar forecasting tools and 
models can be used for these emerging 
technologies.

• Other DER systems are different in that the 

system cost, performance, and design are 

specific to individual customers and systems 

tend to be larger (e.g., CHP units)

• In these cases, local knowledge from 

distribution planners might be more useful 

than the top-down methods described here. 
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Public Tools to Develop Forecasts

• NREL is funded by U.S. DOE to maintain and 
develop the dGen DER customer adoption 
model

• Working with planning staff from all seven 
ISO/RTOs to develop joint forecasts, develop 
capacity, and improve methodology

• Open-Source Model released 
https://github.com/NREL/dgen

• Winner of R&D 100 Awards in 2021

• Additions to model ongoing - in addition to 
solar, wind, energy storage we are now 
adding electric vehicles, energy-efficiency 
adoption.

https://www.nrel.gov/analysis/dgen/

https://github.com/NREL/dgen
https://www.nrel.gov/analysis/dgen/
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