MODELING INPUTS FOR 2023 IRP ANALYSIS

MAY 4, 2023

CONTENTS

Modeling working group next steps:

- IRP process timeline
- Modeling run request creation and example

Modeling inputs:

- High-level modeling framework
- Inputs, requirements, and outputs for capacity expansion optimization
- Inputs, requirements, and outputs for production cost modeling
- Reliability inputs and market import limits
- Load and resource inputs
- Environmental constraints
- Commodity price inputs
- Changes to inputs
- EnCompass: modeling for performance
- EnCompass: commitment levels and runtime tradeoffs
- Appendix: additional detail on selected inputs

MODELING WORKING GROUP NEXT STEPS

IRP PROCESS TIMELINE

Talk to us.

KEY DELIVERABLE FROM MODELING WORKING GROUP: MODELING RUN REQUESTS

- One of the deliverables from the modeling request sub-group will be identification of a consensus set of modeling runs for PNM to implement on behalf of all stakeholders
 - If a requested modeling run is not possible, PNM will provide a discussion of why such a run is not possible, and suggest a potential alternative to the requested run

Process for requesting a modeling run (not already conducted by PNM):

- 1. Create technological scenarios by grouping technologies to evaluate
- 2. Choose future
- 3. Choose one or more sensitivities to augment base future assumptions (optional)
 - If more than one sensitivity is selected, an examination must be conducted to make sure the sensitivities implied in the chosen future do not conflict with additional sensitivities

MODELING RUN CREATION BY STEP

MODELING RUN EXAMPLE

MODELING INPUTS

MODELING FRAMEWORK

PNM SYSTEM MODELING – CAPACITY EXPANSION

Inputs	Requirements	Output
Load	Transmission	Expansion Plan
Existing Generation	ETA Limits	System Dispatch
New Resource Options	RPS	System Emissions
Purchase/Sale Contracts	Ancillary Service Requirements	System Cost (PVRR)
Energy Efficiency		
Fuel Prices		
RM/ELCC		

PNM SYSTEM MODELING – PRODUCTION COST MODELING

Inputs	Requirements	Outputs
Expansion plan	Transmission	Detailed Dispatch
Load	ETA Limits	Emissions
Existing generation	RPS	System Costs (PVRR)
New resource options	Ancillary Service Requirements	
Purchase/Sale Contracts	Market Transaction Limits	
Energy Efficiency		
Fuel Prices		
Energy Market prices		

RELIABILITY INPUTS AND MARKET IMPORT LIMITS

Planning Reserve Margin (PRM):

• 16% for 0.1 LOLE target

ELCCs for new and existing resources:

- Utilize 3-axis ELCC curves for wind, solar, and storage accounting for diversity benefits and resource interactions
- See Appendix for summary
- See <u>January 17, 2023</u> presentation on Astrape ELCC study results

Market import limitations:

- Modeled market assistance included in resource adequacy analysis reflects wholesale transactions based on economics and transmission constraints
- Market participation is allowed in all hours except for the following constraints:
 - Limited to 200-300 MW in all hours when load is greater than 85% of the gross peak load
 - Limit to 100-150 MW for Jun-Aug hours 16-18 when load is greater than 85% of gross peak load
 - Limit to 50 MW for Jun-Aug hours 19-22 when hourly gross load is greater than 80% of the gross peak load
- See January 17, 2023 presentation on Market Imports and Summer 2022 review

LOAD AND RESOURCE INPUTS

Load forecasts:

- Reference forecast
- High economics
- Low economics
- Strong energy growth
- Weak energy growth
- High BTM PV
- Low BTM PV
- Zero incremental BTM PV
- Zero BTM PV
- High EV adoption
- Low EV adoption
- Aggressive environmental regulation
- High building electrification
- TOU pricing
- Extreme weather
- See <u>December 15, 2022</u> presentation on Energy Efficiency, Load Forecast, and Pricing topics

Energy efficiency:

- Existing EE programs
- New EE bundles
- See June 22, 2022 and December 15, 2022 presentation on Energy Efficiency programs and bundles

Resources:

- Existing generation
 - Existing nuclear, coal, and gas
 - Existing wind, solar, and storage
 - 2026 RFP resources
- New generic resource options
 - Wind, solar, storage
- New RFI resource options
- See <u>November 2, 2022</u> presentation on Siemens commodity price forecast and technology costs
- See <u>February 15, 2023</u> presentation on Modeling Framework, Core Scenarios, and RFI selections
- See Appendix H of 2020 IRP for existing resource detail

ENVIRONMENTAL PROGRAM INPUTS (CONSTRAINTS)

Energy Transition Act:

- 400 lbs CO2/MWh in 2023
- 200 lbs CO2/MWh by 2032
- 0 lbs CO2/MWh by 2040

Renewable Portfolio Standard:

- 40% of retail sales supplied by renewables in 2025
- 50% of retail sales supplied by renewables in 2030
- 80% of retail sales supplied by renewables in 2040

COMMODITY PRICE INPUTS

Energy market prices:

 Developed by Horizons Energy using National Database

Fuel prices:

- Natural gas hub pricing
 - San Juan (Northern resources, ABQ resources, FCPP startup)
 - Permian basin (Southern resources)
 - See <u>November 2, 2022</u> presentation on Commodity Pricing forecasts
 - See Appendix for summary
- Hydrogen pricing developed by E3
 - See appendix for summary

CO2 prices:

- PNM will utilize Siemens CO2 price forecast, with adjustments for 2028 start year
- See appendix for summary
- See <u>November 2, 2022</u> presentation on Commodity Pricing forecasts

CHANGES TO INPUTS

ENCOMPASS MODELING FOR PERFORMANCE

Maximize commitment and dispatch detail of existing and new resources within simulations

Minimize time to perform detailed simulations to allow more time for additional scenarios/and or in-depth analysis

ENCOMPASS MODELING FOR PERFORMANCE - COMMITMENT

No Commitment

Enforced

- · Ramp rates
- Ancillary requirements (spin)
 Ignored
- Min Capacity (non-must-run)
- Regulation (min/max range)
- Min Uptime/Downtime

Estimated

Starts/Shutdowns

Partial Commitment

Enforced

- Starts/Shutdowns (fractional,
- i.e., 0.4 units = 1 unit @ 40%)
- Ramp rates
- Ancillary requirements (spin)
- Regulation (min/max range)
- Min Uptime/Downtime
 <u>Ignored</u>
- Min Capacity (non-must-run)

Full Commitment

Enforced

- Starts/Shutdowns (integer)
- Ramp rates
- Ancillary requirements (spin)
- Min Capacity (non-must-run)
- Regulation (min/max range)
- Min Uptime/Downtime

Best For:

• Scenario Capacity Expansion Planning

Best For:

 Scenario Production Cost Modeling (Annual/Monthly)

Faster Runtime

More Precision

• Annual Emission Limits

Best For:

Hourly Production
 Cost/Dispatch

APPENDIX: ADDITIONAL DETAIL ON SELECTED INPUTS

NATURAL GAS PRICING SUMMARY

Natural gas pricing provided by Siemens

2038

039

040 041 042

HYDROGEN PRICING SUMMARY – HYDROGEN PRICE TO BE UTILIZED IN 2040 AND BEYOND

- Natural gas scenarios assume that plants capable of burning hydrogen will be converted beginning in 2040
- In these cases, hydrogen is assumed to be available via pipeline, and utilization incurs a fuel cost
- Hydrogen pricing in 2040 and beyond is uncertain today
- E3 developed hydrogen pricing that reflects a levelized cost of new hydrogen production infrastructure each year (2040 estimate shown here)
- Actual commodity price is still unknown, and may not track levelized cost of new infrastructure
- PNM will also run sensitivities under which hydrogen is priced using natural gas as a benchmark – specifically, a scenario in which hydrogen has a floor price set by natural gas

CO2 PRICING SUMMARY

Carbon prices provided by Siemens; PNM adjustments

TRANSMISSION COST ADDERS

	_	\$2025	\$2025	\$2025	\$2025	\$2025	\$2025	\$2025
		Loadside	North (1st 600 MW)	North (2nd 600 MW)	North (3rd 600 MW)	South	West	East
	-	\$/kW	\$/kW	\$/kW	\$/kW	\$/kW	\$/kW	\$/kW
Assumptions:	2025	\$248	\$137	\$267	\$638	\$-	\$500	\$324
 Transmission costs include interconnection and delivery costs 	2026	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2027	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2028	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2029	\$248	\$137	\$267	\$638	\$-	\$500	\$324
 Cost reflect total project cost 	2030	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2031	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2032	\$248	\$137	\$267	\$638	\$-	\$500	\$324
 Zonal transmission adders to be combined with zonal generic resource costs to 	2033	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2034	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2035	\$248	\$137	\$267	\$638	\$-	\$500	\$324
determine total resource	2036	\$248	\$137	\$267	\$638	\$-	\$500	\$324
cost to portfolio in	2037	\$248	\$137	\$267	\$638	\$-	\$500	\$324
expansion plans	2038	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2039	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2040	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2041	\$248	\$137	\$267	\$638	\$-	\$500	\$324
	2042	\$248	\$137	\$267	\$638	\$-	\$500	\$324

Transmission cost adders developed by PNM

Marginal ELCCs: 4-Hr Storage

4-Hr Storage Marginal ELCC

-1,531 MW Solar and 807 MW Wind -2,331 MW Solar and 807 MW Wind -3,131 MW Solar and 807 MW Wind

Net Load Shape Analysis – 1,600 MW of Storage under 2 Solar Scenarios

Marginal ELCCs: Solar

Solar Marginal ELCC

Solar Penetration (MW)

Marginal ELCCs: Wind

Wind Marginal ELCC

innovation in electric system planning