PNM 2023-2042 IRP: Initial Modeling Results
DISCLOSURE REGARDING FORWARD LOOKING STATEMENTS

The information provided in this presentation contains scenario planning assumptions to assist in the Integrated Resource Plan public process and should not be considered statements of the company’s actual plans. Any assumptions and projections contained in the presentation are subject to a variety of risks, uncertainties and other factors, most of which are beyond the company’s control, and many of which could have a significant impact on the company’s ultimate conclusions and plans. For further discussion of these and other important factors, please refer to reports filed with the Securities and Exchange Commission. The reports are available online at www.pnmresources.com.

The information in this presentation is based on the best available information at the time of preparation. The company undertakes no obligation to update any forward-looking statement or statements to reflect events or circumstances that occur after the date on which such statement is made or to reflect the occurrence of unanticipated events, except to the extent the events or circumstances constitute material changes in the Integrated Resource Plan that are required to be reported to the New Mexico Public Regulation Commission (NMPRC) pursuant to Rule 17.7.4 New Mexico Administrative Code (NMAC).
PNM’s Existing Resource Portfolio and Near-Term Resource Adequacy

- Installed capacity, MW

2023 year-end	2024 year-end
Nuclear | 288 MW | 288 MW
Coal | 0 MW (FCPP abandoned*) | 288 MW
Natural gas | 987 MW | 987 MW
Wind | 658 MW | 658 MW
Geothermal | 787 MW | 1,477 MW
Solar | 200 MW | 1,477 MW
Storage | 298 MW | 620 MW

- 2024 capacity

- Storage: 620 MW
- Solar: 1,477 MW
- Wind: 658 MW
- Natural gas: 987 MW
- Coal: 0 MW (FCPP abandoned*)

- Near term additions include 400 MW of solar and 170 MW of storage by the end of 2023
- By year-end 2024, PNM will have added an additional 690 MW of solar and 450 MW of storage
- RFPs for 2026-2028 are currently ongoing

*Pending appeal at NM Supreme Court
KEY ELEMENTS WITHIN TIMELINE FOR 2023 IRP ANALYSIS POINT TO 2028-2033 AS A CRITICAL PERIOD

- Scenarios will be focused on resource additions in the 2028-2033 timeframe
- Several factors contribute to the focus on 2028-2033:
 - End of contracts/depreciable lives
 - Significant changes in carbon-intensity requirements in 2032
 - Longer development lead-times for resources described in responses to the RFIs
- Decisions made here are likely to influence PNM’s path to carbon-free

Environmental targets:
- 400 lbs/MWh CO2 2023*
- 40% RPS 2025
- 200 lbs/MWh CO2 2032
- 80% RPS 2040
- Carbon-free by 2040

Existing resources:
- FCPP exit end of 2024**
- Valencia PPA expires 2028
- End of Reeves depreciable life 2030

* Commission has yet to promulgate rule for measuring compliance
** Pending supreme court decision
TECHNOLOGIES FOR PHASE 1 MODELING

- **Base technologies only**
 - PNM relies on solar, wind, and storage (lithium-ion) to meet future need and carbon emission reduction goals

- **Base + long-duration Storage**
 - PNM makes a commitment to add long-duration storage in the 2028-2033 timeframe to meet future capacity need and facilitate clean energy transition

- **Base + natural gas**
 - PNM allows new build of natural gas resources that will be converted to utilize hydrogen in 2040

- **Base + wind expansion**
 - PNM seeks strategic transmission expansion in the late 2020’s/early 2030s to integrate a large quantity of wind resources

- **Base + carbon capture**
 - PNM relies on carbon capture and sequestration technologies to meet future capacity need and facilitate clean energy transition

- **Base + H2/early gas conversion**
 - PNM pilots use of hydrogen before 2040 by creating green hydrogen via electrolysis for use in new or existing CTs

Energy efficiency and demand response included in all scenarios
• PNM has incorporated numerous updates to its modeling in this IRP cycle

• While we have taken every effort to ensure the validity of these techniques, please understand that the results we will discuss are considered preliminary draft results and will likely change as we continue to refine the analysis

• In previous IRP cycles we would not present results before a full draft of the IRP was ready; we have made efforts to get stakeholders involved earlier in this IRP cycle, starting the public advisory process earlier than ever

• In order to maximize stakeholder involvement, presenting preliminary results and inviting feedback earlier is equally important

• At this stage, we will highlight some of the key trends we see so far, and some of the areas that require further study and refinement
PHASE 1 SCENARIOS EXPLORE ATTRIBUTES OF A VARIETY OF TECHNOLOGIES

<table>
<thead>
<tr>
<th>Scenario Name</th>
<th>Scenario-Specific Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base technologies</td>
<td>Only solar, storage, and EE, DR allowed through 2032</td>
</tr>
<tr>
<td>LD storage - CAES</td>
<td>At least 100 MW of compressed air energy storage by 2032</td>
</tr>
<tr>
<td>LD storage - Flow</td>
<td>At least 100 MW of flow batteries by 2032</td>
</tr>
<tr>
<td>LD storage - IAS</td>
<td>At least 100 MW of iron air energy storage by 2032</td>
</tr>
<tr>
<td>LD storage - PHS 8-hr</td>
<td>300 MW of pumped storage (8hr) by 2032</td>
</tr>
<tr>
<td>LD storage - PHS 70-hr</td>
<td>300 MW of pumped storage (70hr) by 2032</td>
</tr>
<tr>
<td>LD storage - Thermal</td>
<td>At least 150 MW of thermal energy storage by 2032</td>
</tr>
<tr>
<td>Thermal - CT</td>
<td>New hydrogen-ready CTs allowed</td>
</tr>
<tr>
<td>Thermal - Linear</td>
<td>New hydrogen-ready linear generators allowed</td>
</tr>
<tr>
<td>Wind expansion</td>
<td>New wind & associated transmission allowed beginning in 2028</td>
</tr>
<tr>
<td>CCS - CCGT retrofit</td>
<td>Afton CC (235 MW) retrofitted with CCS capability</td>
</tr>
<tr>
<td>CCS - Net Power</td>
<td>280 MW NET power plant added by 2032</td>
</tr>
<tr>
<td>H2 - 250 MW</td>
<td>~250 MW hydrogen-fueled CT & ~750 MW electrolyzer added in 2031</td>
</tr>
</tbody>
</table>

- In Phase 1, technology-specific scenarios are screened under the Current Trends and Policy future for capacity expansion and production cost runs.
- This approach gives PNM the ability to evaluate the overall portfolio costs associated with a range of scenarios.
- Results presented today include:
 - Portfolio-level carbon intensity
 - Present value revenue requirement
 - New capacity additions through 2032/2042
- All portfolios required to meet reliability, RPS, and carbon-intensity targets

Preliminary results
ALL PORTFOLIOS MEET ENVIRONMENTAL REQUIREMENTS

Renewable production as % of retail load across portfolios

• Note that renewable production is often used to charge storage resources – storage losses are not reflected here
• Does not reflect load served by BTM solar generation

Carbon intensity across portfolios

Preliminary results
COST COMPARISON ACROSS SCENARIOS

PVRR by scenario ($MM)

Delta to least cost, PVRR by scenario ($MM)

Preliminary results
NEW RESOURCE ADDITIONS BY 2032 (GENERIC/RFI ADDITIONS 2025-2032, DOES NOT REFLECT RETIREMENTS)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>PVRR rank</th>
<th>Solar</th>
<th>Wind</th>
<th>Energy Efficiency</th>
<th>Demand response</th>
<th>Battery Storage</th>
<th>Pumped Storage</th>
<th>Long-Duration Storage</th>
<th>Electrolyzer</th>
<th>CTs</th>
<th>Linear generator</th>
<th>CCS Retrofits</th>
<th>NET power plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal - CT</td>
<td>1</td>
<td>193</td>
<td>-</td>
<td>152</td>
<td>42</td>
<td>684</td>
<td>-</td>
<td>-</td>
<td>164</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thermal - Linear</td>
<td>2</td>
<td>251</td>
<td>-</td>
<td>157</td>
<td>63</td>
<td>801</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - CAES</td>
<td>3</td>
<td>318</td>
<td>-</td>
<td>153</td>
<td>42</td>
<td>747</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - Thermal</td>
<td>4</td>
<td>221</td>
<td>-</td>
<td>155</td>
<td>63</td>
<td>658</td>
<td>-</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - Flow</td>
<td>5</td>
<td>314</td>
<td>-</td>
<td>160</td>
<td>63</td>
<td>703</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - IAS</td>
<td>6</td>
<td>191</td>
<td>-</td>
<td>154</td>
<td>63</td>
<td>753</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wind expansion</td>
<td>7</td>
<td>800</td>
<td>-</td>
<td>155</td>
<td>63</td>
<td>771</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base technologies</td>
<td>8</td>
<td>294</td>
<td>-</td>
<td>162</td>
<td>63</td>
<td>857</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - PHS 8-hr</td>
<td>9</td>
<td>72</td>
<td>-</td>
<td>147</td>
<td>63</td>
<td>662</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H2 - 250 MW</td>
<td>10</td>
<td>855</td>
<td>-</td>
<td>151</td>
<td>42</td>
<td>688</td>
<td>-</td>
<td>-</td>
<td>768</td>
<td>256</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CCS - CCGT retrofit</td>
<td>11</td>
<td>338</td>
<td>-</td>
<td>161</td>
<td>63</td>
<td>945</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>196</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - PHS 70-hr</td>
<td>12</td>
<td>249</td>
<td>-</td>
<td>149</td>
<td>63</td>
<td>435</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CCS - Net Power</td>
<td>13</td>
<td>173</td>
<td>-</td>
<td>157</td>
<td>42</td>
<td>686</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>280</td>
<td>-</td>
</tr>
</tbody>
</table>

Preliminary results
NEW RESOURCE ADDITIONS BY 2042 (GENERIC/RFI ADDITIONS 2025-2042, DOES NOT REFLECT RETIREMENTS)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>PVRR rank</th>
<th>Solar</th>
<th>Wind</th>
<th>Energy Efficiency</th>
<th>Demand response</th>
<th>Battery Storage</th>
<th>Pumped Storage</th>
<th>Long-Duration Storage</th>
<th>Electrolyzer</th>
<th>CTs</th>
<th>Linear generator</th>
<th>CCS Retrofits</th>
<th>NET power plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal - CT</td>
<td>1</td>
<td>1,190</td>
<td>1,000</td>
<td>304</td>
<td>42</td>
<td>1,603</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>328</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thermal - Linear</td>
<td>2</td>
<td>1,429</td>
<td>1,000</td>
<td>308</td>
<td>63</td>
<td>2,181</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - CAES</td>
<td>3</td>
<td>1,465</td>
<td>1,000</td>
<td>304</td>
<td>42</td>
<td>2,170</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - Thermal</td>
<td>4</td>
<td>1,460</td>
<td>1,000</td>
<td>307</td>
<td>63</td>
<td>2,231</td>
<td>-</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - Flow</td>
<td>5</td>
<td>2,097</td>
<td>800</td>
<td>314</td>
<td>63</td>
<td>2,284</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - IAS</td>
<td>6</td>
<td>1,495</td>
<td>1,000</td>
<td>308</td>
<td>63</td>
<td>2,385</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wind expansion</td>
<td>7</td>
<td>1,528</td>
<td>1,000</td>
<td>309</td>
<td>63</td>
<td>2,603</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base technologies</td>
<td>8</td>
<td>2,095</td>
<td>800</td>
<td>316</td>
<td>63</td>
<td>2,542</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - PHS 8-hr</td>
<td>9</td>
<td>1,473</td>
<td>1,000</td>
<td>298</td>
<td>63</td>
<td>1,836</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H2 - 250 MW</td>
<td>10</td>
<td>4,516</td>
<td>-</td>
<td>303</td>
<td>42</td>
<td>3,716</td>
<td>-</td>
<td>-</td>
<td>768</td>
<td>256</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CCS - CGT retrofit</td>
<td>11</td>
<td>1,213</td>
<td>1,000</td>
<td>312</td>
<td>63</td>
<td>2,201</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>196</td>
<td>-</td>
</tr>
<tr>
<td>LD storage - PHS 70-hr</td>
<td>12</td>
<td>1,770</td>
<td>1,000</td>
<td>301</td>
<td>63</td>
<td>1,759</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CCS - Net Power</td>
<td>13</td>
<td>1,470</td>
<td>1,000</td>
<td>304</td>
<td>42</td>
<td>2,328</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>280</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Preliminary results
AREAS OF FOCUS FOR ADDITIONAL STUDY

• The Inflation Reduction Act (IRA) is a significant and complex piece of legislation that provides significant tax credits for investment in and production from a wide range of clean energy technologies.

• Given the complexity of the IRA and lack of detailed guidance on all aspects, we are modeling the impacts given our current understanding – which will evolve as we continue to learn and better understand the IRA.

• We continue to assess PTC interactions and implications for our modeling.

• We continue to evaluate results and review our modeling approaches regarding RFI technologies and hydrogen.

• We will use our initial results and findings to better inform next phase analysis.

Preliminary results
PNM’S INITIAL OBSERVATIONS & NEXT STEPS

Initial Observations

• Due to favorable economics enabled by the IRA and diversity with solar, wind appears cost-effective across all portfolios; to the extent we can develop transmission, it may play a role in meeting near-term needs.

• Solar and storage will play a key role in meeting our future needs, but meeting near-term needs with solar and storage exclusively is costly—we want to ensure we’re taking steps to make other options available.

• Multiple longer duration storage technologies can serve as viable solutions to meet reliability needs in the early 2030s and merit further investigation.

• Thermal technologies provide cost savings and are a proven option—and we can add capacity without materially impacting any of our environmental objectives.

• While natural gas scenarios are some of the lowest-cost, they hinge on the existence of a hydrogen economy by 2040—further exploration of alternative options for these resources, should we invest in them, is needed.

• Large tax credits for hydrogen production infrastructure and renewable production appear to provide some benefits to the hydrogen scenario; however, this is a very complex scenario, and warrants continued evaluation of IRA rules and technology advancements.

Next Steps

• Examine how robust initial observations are to key uncertainties.

• Explore implications of technology cost uncertainty upon results that rely heavily on emerging technologies.

• Determine the cost to add additional wind/solar/battery storage capacity by 2040 should a hydrogen economy fail to materialize.

• Construct hybrid scenarios that combine most attractive options identified in initial scenario analysis; Phase 2 modeling will inform us about synergies between technologies.

• Conduct additional reliability modeling of most promising portfolio options.

Preliminary results
MAKE SURE WE HAVE UP TO DATE CONTACT INFORMATION FOR YOU

www.pnm.com/irp for documents
IRP@pnm.com for e-mails

Register your email on sign-in sheets to receive alerts of upcoming meetings and notices that we have posted to the website.
Thank you