PNM IRP Stakeholder Process - SoN

Parking Lot

What describes end-of-life? For example, batteries may have an end-of-life when they can deliver only 70% of their nameplate capacity.

How is the resource disposed of at the end of its operational life?

Two resources that need to be included are Geothermal and Small Modular Reactors (SMR)>Small Modular Reactors go against the ETA requirement that 100% of IOU generation sources be renewable by...2045 or 2050. NM has been abused by the nuclear industry from cradle to grave. In addition, Germany has rightly retired its last 3 nuclear power plants this year recalling that 3 generations of use is now resulting in 30,000 generations of oversight of its waste. No thank you.

And again any new gas must be excluded. Methane is 85x more potent GHG than CO2 over 20 yrs, but because it exits the cycle within 12 yrs, it should be counted in the short term as 150-200x more potent.

Energy Efficiency

● PNM already offers a robust energy efficiency portfolio.
 o The IRP should reflect that existing effort, likely as a load forecast modifier. However, there is incremental energy efficiency to gain in PNM’s territory.

● PNM has developed bundles of energy efficiency measures which can be selected by the IRP models.
 o These bundles are quite comprehensive but additional details are needed around cost assumptions and omitted technologies.

● PNM should provide insight into the energy efficiency IRP selections by sector, technology, and cost.

Demand Response

● Another DSM area in which PNM has existing resources.

● This should be taken into account in the load forecast.

● PNM should identify new, incremental demand response that can be selected as a resource in the IRP model.

Load management

● Include time of use rates and other dynamic rate options.

● Should be modeled in any IRP efforts.

● A well-designed dynamic rate can change the load profile of customers and therefore the resources
needed to meet demand in any given hour or day of the year.

- Different load shifting and adoption scenarios should be run
- What are grid improvements needed for DSM to be quantifiably be included in the IRP?
- Assuming PNM receives approval in case 22-00058-UT, then the grid improvements needed to measure DSM impacts for accurate quantification will be coming online over the next few years.
- PNM does not have the visibility in the existing grid to effectively use DSM as a time and location based resource at this time.

How will PNM’s programs such as Whole House Electric Vehicle (WHEV) rate impact DSM?

7

Will low-income customers get price incentives with smart meters?[1] And you should make the program voluntary, as there are real concerns for increased electromagnetic wave generation. Beyond the IRP discussion in my opinion. These issues are better for the energy efficiency filing.

As for comments and updates I don’t have much to add right now but I do think an explanation of what an IRP is and isn’t should be part of this effort. I say this because, as we have marched through this process, I have started to learn that since the Action Plan is only a 3-year look ahead, the rest of the IRP 20-year window is effectively, speculation. I originally had the false assumption that an IRP was essentially a Utility’s capital outlay plan that looked out 20 years, but now I realize that is not the case.

Unfortunately, when we are looking to the utilities to clearly define and start initiating their planned buildout for the Energy Transition, the IRP is not the tool. I think that should be highlighted so the public knows the IRP is not a fully transparent window into the future.

A previous version of the SoN identified 13 potential resources and now it’s been cut to three with the elimination of any types of gas. All options should be left on the table as it is too early to eliminate any while PNM is making the transition from carbon-based energy to other forms of energy. Options, including current energy sources, should be prioritized based on feasibility of the available technology, required infrastructure, reliability, and environmental & social costs (lifecycle costs). - Robert Barber

- Need to pull out section on consumer education and NIMBY and make it higher profile (she has
made this comment in several meetings)
Fengu – include impacts on electrification on load forecast
● Ensure new capabilities of wind turbines is taken into account in modeling
● (Margie – should these be added to modeling questions?)
Jim REIA – need to include more information on distribution system planning into IRP process.
Cliff – (in SoN or somewhere) add recommendation that PNM increase its data collection on outages on the distribution system, specifically calling out outages in disadvantaged areas.
From Ho, Clifford Heinrich in the chat ---
Sorry, meant to send this earlier during our discussion of the Statement of Need: With regard to my comment on distribution system reliability, I believe that a discussion of how the collection, use, and dissemination of reliability data (SAIDI, SAIFI, MAIFI, CAIDI) can be (or is being) used to improve the reliability of both distributed and centralized energy resources on an ongoing basis (as feedback and validation for modeling and planning) may be beneficial. I believe these data, if reported on a sufficiently granular level, can also be used to inform equity (e.g., are disadvantaged communities receiving the same power reliability as other communities, especially with the rapid growth of distributed energy resources?).

ARCHIVED SECTIONS

8

a. Regulatory Environment and Requirements
i. Legal requirements and standards in planning horizon
1. Energy Transition Act
a. Renewable Energy Act / Renewable Portfolio Standard
i. 80% renewable by 2040 and 100% carbon-free by 2045
b. Status of plant abandonment and replacement power
2. Efficient Use of Energy Act
a. Energy efficiency and load management goals starting in 2025/6
3. EPA GHG Standards for fossil-fuel power plants
a. Proposed 5/23/23, may take 1 year or longer to finalize
b. Starting in 2030, the proposed requirements vary by the type of unit (new or existing, combustion turbine or utility boiler, coal-fired or natural gas-fired), how frequently it operates, and its operating horizon (i.e., planned operation after certain future dates).

4. EPA Good Neighbor Plan
a. NOx emissions trading regime for power plants in 22 states
b. March 15, 2023 plan did not include New Mexico but said “EPA's updated modeling analysis for 2023 suggests that the states of Arizona, Iowa, Kansas, and New Mexico, may be significantly contributing to nonattainment or maintenance in downwind sites.
EPA intends to undertake additional assessment of its modeling for these states and will determine if it is necessary to address Good Neighbor obligations for these states in future action(s)."

ii. Known and expected rules
2. NM Administrative Code 17.7.3
3. Case #21-00128-UT Final Order
 a. Substantial revisions to NMAC 17.7.3 IRP planning rule, of which this Statement of Need is a part.
 i. IRP filing and content requirements
 ii. description of existing resources, (2) current load forecast, (3) load and resources table, (4) identification of resource options, (5) statement of need, (6) determination of the resource portfolio, and (7) action plan,
 iii. Facilitated Stakeholder Process; IRP Process
 iv. Statement of Need
 v. Action Plan
 1. June 2 PRC letter re: Action Plan period and planning horizon
 vi. Request for Proposals Process, Cost recovery, Independent Monitor, Variances and Amendments
4. Case #21-00033-UT(PNM 2021 IRP) Final Order
 a. “23. For this reason, the Commission finds that PNM should include, in its future 2023 IRP filing a meaningful analysis of transmission and distribution constraints and opportunities to increase resource availability and flexibility.”

9
b. Additional requirements/orders added since #21-00128-UT Final Order?